
IEIJTATION PAGE Forpm Appr~o~vod0 1u8A D-A 259 300 VPAGE I . 61'" ou,,No t 070 4ha -0,188as'g)
S1 ourpeq•il•Oe. €• U1 time fo m~snml irutructmn=, suiorri exrnbn data uourxes ga~he'wt •' maiutarun the data

ar*.o hierWW80iem of &MIh p tts colctmrt of kto maton I ic et mr a rh ~r
IM s 1215 Jeftermn Davis H#-hay. &jtiM 12"4, Aifigort VA 22202-4302. and to do Offhce of IW*,rmatiOn and PAgula~rY Altars Ofic* of

?. REPORT DATE 3, REPORT TYPE AND DATES COVERED

December 1992 Technical

4. TITLE AND SUBTITLE 5. FUNDING NUMBERS

Ada Quality and Style: Guidelines for Professional Programmers, Version 02.01.01

6. AUTHOR(S)

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) V I 8. PERFORMING ORGANIZATION
REPORT NUMBER

Softwre Productivity Consortium I:- L- SPC-91061 -CMC
SPc Building/2214 Rock Hill Rd. -
Herndon, VA 22070 orESSS

9 SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(10. SPONSORING/MON!TOR:NG AGENCY

Ada Joint Program Office
The Pentagon, Rm 3E118
Washington, DC 20301-3080

1. SUPPLEMENTARY NOTES

An electronic version of this document is available on the AdaIC bulletin board (703/614-0215) and on the AJPO Internet
host (ajpo.sei.cmu.edu)

12a. DISTRIBUTION/AVAILABILITY STATEMENT 12b. DISTRIBUTION CODE

Cleared for public release
Distribution Unlimited

13. ABSTRACT (Maximum 200 words)

This version of Ada Quality and Style: Guidelines for Professional Programmers was updated under contract to the
Department of Defense (DoD) Ada Joint Program Office (AJPO). Considerable effort was placed on improving the
coverage of portability and reuasability issues, so the majority of changes can be found in those chapters. A new chapter
has been included to address performance issues.

92 1 2,3 %079 92-32726

14. SUBJECT TERMS 15. NUMBER OF PAGES

Ada, Style guide 216
16. PRICE CODE

17 SECURITY CLASSIFICATION 18. SECURITY CLASSIFICATION 19. SECURITY CLASSIFICATION 20 LIMITATION OF ABSTRACT
Uf REPUk I I OF ABSTRACT

UNCLASSIFIED UNCLASSIFIED UNCLASSIFIED UNCLASSIFIED

NSN 7540-01-280550
StaoJard Form 298, (Rev 2-89)
Prescribed by ANSI Std 239-128

Ada Quality and Style:
Guidelines for Professional Programmers

SPC-9106 1-CMC

VERSION 02.01.01

DECEMBER 1992

Accesion For

NTIS CRA&M
- A DTIC TAB

iu!.3nounced El
JuSti ic:ýtiofl

By.................-

Diý,t ibutiofl

Availability Codes

SOFTWARE PRODUCTIVITY CONSORTIUM, INC. Avail and I or
SPC Building 0;.;t Special'j

2214 Rock Hill Road

Herndon, Virginia 22070_

Copyrght 0 1989,1991, 1992 Software Productivity Consortium, Inc., Herndon, Virginia. Permission to use, copy, modify and
distribute this documentation for any purpose and without fee is hereby granted. provided that the above copyright notice

aears in all coisadthat both this copyright notice and this permission notice appear in supporting documentation, and
thatthe nameSfwr Productivity Consortium not be used in advertising or publicity pertaining to distribution of the
guidelines without the specific, written prior permission of the Consortium. Software Productivity Consortium, Inc. makes no
representations about the suitability of the guidelines described herein for any purpose and they are provided "as is" without
express or implied warranty.

Ada-ASSURED is a trademark of GrammaTech, Inc.

IBM is a registered trademark of International Business Machines Corporation.

VAX it st regiteY :u irauema, k uf" Digital Equipment Corporation.

PREFACE

This version of Ada Quality and Style: Guidelines for Professional Programmers was updated under
contract to the Department of Defense (DoD) Ada Joint Program Office (AJPO). Considerable effort was
placed on improving the coverage of portability and reusability issues, so the majority of changes can be
found in those chapters. A new chapter has been included to address performance issues.

The most visible change, however, involves the capitalization issue. The guideline has not changed, but the
instantiation now recommends mixed-case identifiers with upper-case abbreviations and lower-case
reserved words. Several informal surveys and the general consensus of the reviewers showed strong support
for this change.

The Complete Examples chapter includes two new examples which highlight portability and the use of
tasking. Each of the examples in this chapter are intended to be compilable and executable.

The Consortium invites comments on this guidebook to continue enhancing its quality and usefulness. We
will consider suggestions for current guidelines and areas for future expar.ion. Examples that highlight
particular points are most helpful.

Please direct comments to:
Technology Transfer Division - AQS
Software Productivity Consortium
SPC Building
2214 Rock Hill Road
Herndon, Virginia 22070-4005
(703) 742-7211

DoD activities and Defense contractors can obtain copies of this document through the Defense Technical
Information Center:

DTIC
Cameron Station
Alexandria, VA 22314
(703) 274-7633

The general public can order copies through the National Technical Information Service:
NTIS, Commerce Dept.
5285 Port Royal Rd.
Springfield, VA 22161
(703) 487-4650

Electronic copies are available for downloading from the Ada IC Bulletin Board, (703) 614-0215, and from
the AJPO host (ajpo.sei.cmu.edu) on the Defense Data Network.

iii

iv Ada QUALITY AND STYLE

v

AUTHORS AND ACKNOWLEDGEMENTS

The editor for this third version of Ada Quality and Style: Guidelines for Professional Programmers is Doug
Smith. Kent Johnson managed the update project and the DoD Ada Joint Program Office provided the
funding. As part of this update, a panel of distinguished reviewers was chosen from aczdemia, government,
and industry. Their contributions and efforts to improve this document are greatly appreciated:

Ms. Christine Braun GTE Federal Systems

Dr. Charles B. Engle, Jr. Department of Computer Science
Florida Institute of Technology

Dr- Michael B. Feldman Department of Electrical Engineering and Computer Science
George Washington University

Dr. Robert Firth Software Engineering Institute
Carnegie-Mellon University

Ms. Eileen S. Quann FASTRAK Training, Inc.

Dr. Charles H. Sampson Computer Sciences Corporation

Mr. Ed Seidewitz NASA. Goddard Space Flight Center

Lisa Finneran, Rick Kirk, and Eric Marshall also served as Software Productivity Consortium reviewers.
Mike Cochran made the majority of changes to the Concurrency chapter and Alex Blakemore authored or
rewrote several guidelines for this version. Lyn Uzzle helped fix the menu-driven interface example. Public
comment was invited, and Fred J. Roeber and Bob Crispen provided a considerable amount of suggestions.

Susan Robanos provided technical editing, Debra Morgan provided word processing, and Tina Medina
provided clean proofing.

A special thanks to GrammaTech, Inc. who made their Ada-ASSURED product available. All of the
examples were formatted in whole or in part using their tool.

This version builds on the success of the authors and contributors to previous versions. The
acknowledgements from those efforts are included here.

The authors for the second edition were Kent Johnson, Elisa Simmons, and Fred Stluka. Contributors were
Alex Blakemore and Robert Hofkin. Reviewers included Alex Blakemore, Rick Conn, Tim Harrison, Dave
Nettles, and Doug Smith. Additional support was provided by Vicki Clatterbuck and Leslie Hubbard.

The following people contributed to an instantiation of the first edition's guidelines: Richard Bechtold, Pete
Bloodgood, Shawna Gregory, Tim Powell, Dave Nettles, Kevin Schaan, Doug Smith, and Perry Tsacoumis.

Special thanks are extended to Loral for providing feedback in the form of their Software Productivity
Laboratory Ada Standards.

The Consortium would also like to acknowledge those involved in the first edition. The authors were Richard
Drake, Samuel Gregory, Margaret Skalko, and Lyn Uzzle. Paul Cohen managed the project. The
contributors and reviewers were Mark Dowson, John Knight, Henry Ledgard, and Robert Mathis.

Additional supporters included Bruce Barnes, Alex Blakemore, Terry Bollinger, Charles Brown, Neil
Burkhard, William Carlson, Susan Carroll, John Chludzinski, Vicki Clatterbuck, Robert Cohen, Elizabeth
Comer, Daniel Cooper, Jorge Diaz-Herrera, Tim Harrison, Robert Hofkin, Allan Jaworski, Edward Jones,
John A.N. Lee, Eric Marshall, Charles Mooney, John Moore, Karl Nyberg, Arthur Pyster, Samuel
Redwine, Jr., William Riddle, Lisa Smith, Fred Stluka, Kathy Velick, David Weiss, and Howard Yudkin.

vi Ada QUALITY AND STYLE

CONTENTS

CHAPTER 1 Introduction ... 1

1.1 HOW TO USE THIS BOOK .. 2

1.2 TO THE NEW Ada PROGRAMMER 2

1.3 TO THE EXPERIENCED Ada PROGRAMMER 3
1.4 TO THE SOFTWARE PROJECT MANAGER 3

1.5 TO CONTRACTING AGENCIES AND STANDARDS ORGANIZATIONS ... 4

CHAPTER 2 Source Code Presentation 5

2.1 CODE FORM ATTING ... 5
2.2 SU M M ARY ... 15

CH APTER 3 Readability .. 17

3.1 SPE LL IN G .. 17

3.2 NAMING CONVENTIONS .. 20

3.3 CO M M ENTS .. 24

3.4 U SIN G TY PES .. 35

3.5 SU M M AR Y ... 37

CHAPTER 4 Program Structure .. 41

4.1 HIGH-LEVEL STRUCTURE ... 41

4.2 V ISIB ILIT Y ... 46

4.3 EXCEPTIO N S .. 50

4.4 SU M M ARY ... 52

CHAPTER 5 Programming Practices 55

5.1 OPTIONAL PARTS OF THE SYNTAX 55

5.2 PARAM ETER LISTS ... 58

5.3 T Y PE S ... 60

5.4 DATA STRUCTURES .. 63

5.5 EXPRESSIO N S ... 66

5.6 STATEM ENTS .. 69

5.7 V ISIBILIT Y ... 77

5.8 USING EXCEPTIONS ... 80

5.9 ERRONEOUS EXECUTION ... 83

5.10 SU M M AR Y ... 87

CH APTER 6 Concurrency ... 91

6.1 TA SK IN G ... 9 i

6.2 COM M UNICATION ... 96

6.3 TERM IN ATIO N ... 104

6.4 SU M M ARY ... 107

CH APTER 7 Portability ... 109

7.1 FU NDAM ENTALS .. 110

7.2 NUMERIC TYPES AND EXPRESSIONS 113

7.3 STORAGE CONTROL ... 116

7.4 TA SK IN G ... 117

7.5 EX CEPTIO N S .. 118

7.6 REPRESENTATION CLAUSES AND IMPLEMENTATION-DEPENDENT
FE AT U R E S ... 119

7.7 INPUT/O UTPUT .. 122

7.8 SU M M AR Y ... 124

CH APTER 8 Reusability .. 127

8.1 UNDERSTANDING AND CLARITY 128

8.2 RO BU STN ESS .. 130

8.3 ADAPTABILITY .. 136

8.4 INDEPENDENCE ... 147

8.5 SU M M AR Y 151

CHAPTER 9 Performance ... 153

9.1 IMPROVING EXECUTION SPEED 153

9.2 SU M M AR Y ... 156

CHAPTER 10 Complete Examples .. 157

10.1 MENU-DRIVEN USER INTERFACE 157

10.2 LINE-ORIENTED PORTABLE DINING PHILOSOPHERS EXAMPLE 165

10.3 WINDOW-ORIENTED PORTABLE DINING PHILOSOPHERS EXAMPLE . 170

APPENDIX A Map from Ada Language Reference Manual to Guidelines 179

REFEREN CES ... 185

BIBLIO GRAPH Y ... 189

IN D E X .. 193

CHAPTER 1
Introduction

This book is intended to help the computer professional produce better Ada programs. It presents a set of
specific guidelines for using the powerful features of Ada in a disciplined manner. Each guideline consists of
a concise statement of the principles that should be followed, and a rationale explaining why following the
guideline is important. In most cases, an example of the use of the guideline is provided, and in some cases a
further example is included showing the consequences of violating the guideline. Possible exceptions to the
application of the guideline are explicitly noted, and further explanatory notes, including notes on how the
guideline could be automated by a tool, are provided where appropriate. Many of the guidelines are specific
enough to be adopted as corporate or project programming standards. Others require a managerial decision
on a particular instantiation before they can be used as standards. In such cases, a sample instantiation is
presented and used throughout the examples. Such instantiations should be recognized as weaker
recommendations than the guidelines themselves. These issues are discussed in 3ection 1.4 of this
introduction. Other sections of the introduction discuss how this book should be used by various software
development personnel.

Ada was designed to support the development of high-quality, reliable, reusable, and portable software. For
a number of reasons, no programming language can ensure the achievement of these desirable objectives on
its own. For example, programming must be embedded in a disciplined development process that addresses
requirements analysis, design, implementation, verification, validation, and maintenance in an organized
way. The use of the language must conform to good programming practices based on well established
software engineering principles. This book is intended to help bridge the gap between these principles and
the actual practice of programming in Ada.

Clear, readable, understandable source text eases program evolution, adaptation, and maintenance. First,
such source text iF- more likely to be correct and reliable. SeconL, effective code adaptation is a prerequisite
to code reuse, a technique that has the potential for drastic reductions in system development cost. Easy
adaptation requires a thorough understanding of the software; this is considerably facilitated by clarity.
Finally, since maintenance (really evolution) is a costly process that continues throughout the life of a
system, clarity plays a major role in keeping maintenance costs down. Over the entire life cycle, code has to
be read and understood far more often than it is written; the investment of writing readable, understandable
code is thus well worthwhile. Many of the guidelines in this book are designed to promote clear source text.

There are two main aspects of code clarity: 1) Careful and consistent layout of the source text on the page or
the screen can enhance readability dramatically; 2) Careful attention to the structure of code can make it
easier to understand. This is true both on the small scale (e.g., by careful choice of identifier names or by
disciplined use of loops) and on the large scale (e.g., by proper use of packages). These guidelines treat both
layout and structure.

Comments in source text are a controversial issue. There are arguments both for and against the view that
comments enhance readability. The biggest problem with comments in practice is that people often fail to
update them when the associated source text is changed, thereby making the commentary misleading.
Commentary should be reserved for expressing needed information that cannot be expressed in code and
highlighting cases where there are overriding reasons to violate one of the guidelines. If possible, source text
should use self-explanatory names for objects and program units; and it should use simple, understandable
program structures so that little additional commentary is needed. The extra effort in selecting (and

1

2 Ada QUALITY AND STYLE

entering) ar propriate names and the extra thought needed to design clean and understandable program
structures are fully justified.

Programming texts often fail to discuss overall program structure; Chapter 4 addresses this. The majority of
the guidelines in that chapter are concerned with the application of sound software engineering principles
such as information hiding and separation of concerns. The chapter is neither a textbook on nor an
introduction to these principles; rather, it indicates how the% can be realized using the features of Ada.

A number of other guidelines are particularly concerned with reliability and portability issues. They counsel
avoidance of language features and programming practices that either depend on properties not defined in
Ada or on properties that may vary from implementation to implementation. Some of these guidelines, such
as the one forbidding dependence on expression evaluation order, should never be violated. Others maN
have to be violated in special situations such as interfacing to other systems. This should only be done after
careful deliberation, and such violations should be prominently indicated. Performance constraints are
often offered as an excuse for unsafe programming practices; this is rarely a sufficient justification.

Software tools could be used to enforce, encourage, or check conformance to many of the guidelines. At
present, such tools for Ada primarily consist of code formatters or syntax directed editors. Existing code
formatters are often parameterizable and can be instantiated to lay out code in a way consistent with many of
the guidelines in this book.

This book is intended for those involved in the actual development of software systems written in Ada. The
following subsections discuss how to make the '-lost effective use of the material presented. Readers with
different levels of Ada experience and differeit roles in a software project will need to use the book in
different ways. Specific comments to three broad categories of software development personnel are
addressed: inexperienced Ada programmers, experienced Ada programmers, and software development
managers.

1.1 HOW TO USE THIS BOOK
There are a number of ways in which this book can be used: as a reference on good Ada style; as a
comprehensive list of guidelines which will contribute to better Ada programs; or as a reference work to
consult about using specific features of the language. The book contains many guidelines, some of which are
quite complex. Learning them all at the same time should not be necessary; it is unlikely that you will be
using all the features of the language at once. However, it is recommended that all programmers (and, where
possible, other Ada project staff) make an effort to read and understand Chapters 2, 3, and 4 and Chapter 5
up to Section 5.7. Some of the material is quite difficult (for example, Section 4.2 which discusses visibility),
but it covers issues which are fundamental to the effective use of Ada and is important for any software
professional involved in building Ada systems.

The remainder of the book covers relatively specific issues. Exceptions and erroneous execution is covered
at the end of Chapter 5; and tasking. portability, and reuse is covered in Chapters 6, 7, and 8 respectively.
You should be aware of the content of this part of the book. You may be required to follow the guidelines
presented in it, but you could defer more detailed study until needed. Meanwhile, it can serve as useful
reference material about specific Ada features; for example, the discussion of floating point numbers in the
chapter on portability.

This book is not intended as an introductory text on Ada or as a complete manual of the Ada language. It is
assumed that you already know the syntax of Ada and have a rudimentary understanding of the semantics.
With such a background, you should find the guidelines useful, informative, and often enlightening.

If you are learning Ada you should equip yourself with a compehensive introduction to the language such as
Barnes (1989) or Cohen (1986). The Ada Language Reference Manual (Department of Defense 1983)
should be regarded as a crucial companion to this book. The majority of guidelines reference the sections of
the Ada Language Reference Manual that define the language features being discussed. Appendix A cross
references sections of the Ada Language Reference Manual to the guidelines.

Throughout the book, references are given to other sources of information about Ada style and other Ada
issues. The references are listed at the end of the book, followed by a bibliography which includes them an'-
other relevant sources consulted during the book's preparation.

1.2 TO THE NEW Ada PROGRAMMER
At first sight, Ada offers a bewildering variety of features. It is a powerful tool intended to solve difficult
problems, and almost every feature has a legitimate application in some context. This makes it especially

INTRODUCTION 3

important to use Ada's features in a disciplined and organized way. The guidelines in this book forbid the

use of few Ada features. Rather, they show how the features can be systematically deployed to write clear,
high-quality programs. Following the guidelines will make learning Ada easier and help you to mayter its
apparent complexity. From the beginning, you can write programs that exploit the best features of the
language in the way that the designers intended.

Programmers experienced in using another programming language are often tempted to use Ada as if it were
their familiar language but with irritating syntactic differences. This pitfall should be avoided at all costs, it
can lead to convoluted code that subverts exactly those aspects of Ada that make it so suitable for building
high-quality systems. You must learn to "think Ada"; following the guidelines in this book and reading the
examples of Lheir .e will help you to do this as quickly and painlessly as possible.

To some degree, novice programmers learning Ada have an advantage. Following the guidelines from the
beginning helps in developing a clear programming style that effectively exploits the language. If you are in
this category, it is recommended that you adopt the guidelines for those exercises you perform as part of
learning Ada. Initially, developing sound programming habits by concentrating on the guideliaes themselves.
and their supporting examples, is more important than understanding the rationale for each guideline. Note
that each chapter ends with a summary of the guidelines it contains.

The rationale for many of the guidelines help experienced programmers understand and accept the
suggestions presented in the guideline. Some of the guidelines themselves are also written for the
experienced programmer who must make engineering tradeoffs. This is especially true in the areas of
portability, reusability, and performance. These more difficult guidelines and rationale will make you aware
of the issues affecting each programming decision. You can then use that awareness to recognize the
engineering tradeoffs that you wili eventually be asked to make when you are the experienced Ada
programmer.

1.3 TO THE EXPERIENCED Ada PROGRAMMER

As an experienced programmer you are already writing code that conforms to many of the guidelines in this
book. In some areas, however, you may have adopted a personal programming style that differs from that
presented here, and you might be reluctant to change. Carefully review those guidelines that are inconsistent
with your current style, make sure that you understand their rationale, and consider adopting them. The
overall set of guidelines in this book embodies a consistent approach to producing high-quality programs that
would be weakened by too many exceptions.

Another important reason for general adoption of common guidelines is consistency. If all the staff of a
project write source text in the same style, many critical project activities are easier. Consistent code
simplifies formal and informal code reviews, system integration, within-project code reuse, and the provision
and application of supporting tools. In practice, corporate or project standards may require deviations from
the guidelines to be explicitly commented, so adopting a nonstandard approach may require extra work.

1.4 TO THE SOFTWARE PROJECT MANAGER

Technical management plays a key role in ensuring that the software produced in the course of a project is
correct, reliable, maintainable, and portable. Management must create a project-wide commitment to the
production of high-quality code; define project-specific coding standards and guidelines; foster an
understanding of why uniform adherence to the chosen coding standards is critical to product quality; and
establish policies and procedures to check and enforce that adherence. The guidelines contained in this
book can aid such an effort.

An important activity for managers is the definition of coding standards for a project or organization. These
guidelines do not, in themselves, constitute a complete set of standards; however, they can serve as a basis
for them. A number of guidelines indicate a range of decisions, but they do not prescribe a particular
decision. For example, the second guideline in the book (Guideline 2.1.2) advocates using a consistent
number of spaces for indentation and indicates in the rationale that 2 to 4 spaces would be reasonable. With
your senior technical staff, you should review each such guideline and arrive at a decision about its
instantiation that will constitute your project or organizational standard.

Two other areas require managerial decisions about standardization. Guideline 3.1.4 advises you to avoid
arbitrary abbreviations in object or unit names. You should prepare a glossary of acceptable abbreviations
for a project that allows the use of shorter versions of application-specific terms (e.g., FFT for Fast Fourier
Transform or SPN for Stochastic Petri Net). You should keep this glossary short and restrict it to terms which

4 Ada QUALITY AND STYLE

need to be used frequently as part of names. Having to refer continually to an extensive glossary to
understand source text makes it hard to read.

The portability guidelines given in Chapter 7 need careful attention. Adherence to them is important even if
the need to port the resulting software is not currently foreseen. Following the guidelines improve the
potential reusability of the resulting code in projects that use different Ada implementations. You should
insist that when particular project needs force the relaxation of some of the portability guidelines,
nonportable features of the source text are prominently indicated. Observing the Chapter 7 guidelines
requires definition and standardization of project- or organization-specific numeric types to use in place of
the (potentially nonportable) predefined numeric types.

Your decisions on standardization issues should be incorporated in a project or organization coding
standards document.

With coding standards in place, you need to ensure adherence to them. Probably the most important aspect
of this is gaining the wholehearted commitment of your programming staff to use them. Given this
commitment, and the example of high-quality Ada being produced by your programmers, it will be far easier
to conduct effective formal code reviews that check compliance to project standards.

Consistent coding standards work well with automatic tool support. If you have a tools group in your project
or organization, they can be tasked to acquire or develop tools to support your standards. It is very cost
effective to use tools to enforce standards. Where tools cannot be used to automatically modify code to
conform to standards, they can often be used to at least check conformance. See the automation notes
sections associated with many of the guidelines.

Some general issues concerning the management of Ada projects are discussed by Foreman and
Goodenough (1987).

1.5 TO CONTRACTING AGENCIES AND STANDARDS ORGANIZATIONS

The guidelines in this document are not intended to stand alone as a standard. It is not even clear in some
cases that a guideline could be enforced since it is only intended to make the engineer aware of tradeoffs. In
other cases, a choice still remains about a guideline, such as how many spaces to use for each level of
indentation.

When a guideline is too general to show an example, the "instantiation" section of each guideline contains
more specific guidelines. These can be considered for a standard and are more likely to be enforccablc.
Any organization that attempts to extract standards from this document needs to evaluate the complete
context. Each guideline works best when related guideines are practiced. In isolation, a guideline may have
little or no benefit.

CHAPTER 2
Source Code Presentation

The physical layout of source text on the page or screen has a strong effect on its readability. This chapter
contains source code presentation guidelines intended to make the code more readable.

In addition to the general purpose guidelines, specific recommendations are made in the "instantiation"
sections. If you disagree with the specific recommendations, you may want to adopt your own set of
conventions that still follow the general purpose guidelines. Above all, be consistent across your entire
project.

An entirely consistent layout is hard to achieve or check manually. Therefore you may prefer to automate
layout with a tool for parameterized code formatting or incorporate the guidelines into an automatic coding
template. Some of the guidelines and specific recommendations presented in this section cannot be
enforced by a formatting tool because they are based on the semantics, not the syntax, of the Ada code.
More details are given in the "automation notes" sections.

2.1 CODE FORMAITI NG
The "code formatting" of Ada source code affects how the code looks, not what the code does. Topics
included here are horizontal spacing, indentation, alignment, pagination, and line length. The most
important guideline is to be consistent throughout the compilation unit as well as the project.

2.1.1 Horizontal Spacing

guideline

"* Use consistent spacing around delimiters.

"* Use the same spacing as you would in regular prose.

instantiation

Specifically, leave at least one blank space in the following places, as shown in the examples throughout
this book. More spaces may be required for the vertical alignment recommended in subsequent
guidelines.

- Before and after the following delimiters and binary operators:
+ - / &

< = = >= >=

- Outside of the quo'es for string (-) and character (,) literals, except where prohibited.

- Outside, but not inside, of parentheses.
- After commas (,) and semicolons (;).

5

6 Ada QUALITY AND STYLE

Do not leave any blank spaces in the following places, even if this conflicts with the above
recommendation.

- After the plus (+) and minus (-) signs when used as unary operators.

- After a function call.

- Inside of label delimiters (<<).

- Before and after the apostrophe (') and period (.)

- Between multiple consecutive opening or closing parentheses.

- Before commas (,) and semicolons (;).

When superfluous parentheses are omitted because of operator precedence rules, spaces may optionally
be removed around the highest precedence operators in that expression.

example
DefaultString : constant String

"This is the long string returned by" &
" default. It is broken into multiple" &

" Ada source lines for convenience.";

type SignedWhole_16 is range -2**15 .. 2**15 - 1;
type AddressArea is array (Natural range <>) of SignedWhole_16;

Register Address_Area (16#7FFO# . 16#7FFF#);
Memory Address_Area (0 . 16#7FEC#);

Register(Pc) := Register(A);

X := SignedWhole_16(Radius * Sin(Angle));

Register(Index) := memory(Base_Address + Index * ElementLength);

Get(Value => Sensor);

ErrorTerm := 1.0 - (Cos(Theta)**2 + Sin(Theta)**21;

Z := X**3 ;
Y C= C* X +÷B;

Volume Length * Width * Height;

rationale

It is a good idea to use white space around delimiters and operators because they are typically short (one
or two character) sequences that can easily get lost among the longer keywords and identifiers. Putting
white space around them makes them stand out. Consistency in spacing also helps make the source code
easier to scan visually.

However, many of the delimiters (commas, semicolons, parentheses, etc.) are familiar as normal
punctuation marks. It is distracting to see them spaced differently in a computer program than in normal
text. Therefore, they should be spaced the same (no spaces before commas and semicolons, no spaces
inside of parentheses, etc.).

exception

The one notable exception is the colon (: In Ada, it is useful to use the colon as a tabulator or a
column separator (see Guideline 2.1.4). In this context, it makes sense to put spaces before and after
the colon, rather than only after as in normal text.

automation notes

The guidelines in this section are easily enforced with an automatic code formatter.

2.1.2 Indentation

guideline

"* Indent and align nested control structures, continuation lines, and embedded units consistently.

"* Distinguish between indentation for nested control structures and for continuation lines.

SOURCE CODE PRESENTATION 7

Use spaces for indentation, not the tab character (Nissen and Wallis 1984, §2.2).

instantiation

Specifically, the following indentation conventions are recommended, as shown in the examples
throughout this book. Note that the minimum indentation is described. More spaces may be required
for the vertical alignment recommended in subsequent guidelines.
- Use the recommended paragraphing shown in the Ada Language Reference Manual (Department

of Defense 1983).

- Use three spaces as the basic unit of indentation for nesting.
- Use two spaces as the basic unit of indentation for continuation lines.

A label is outdented three spaces. A continuation line is indented two spaces:
begin
<<label>> <long statement with line break>

<statement> <trailing part of same statement>
end;

The if statement and the plain loop:

if <condition> then <name>:
<statements> loop

elsif <condition> then <statements>
<statements> exit when <condition>;

else <statements>
<statements> end loop <name>;

end if;

Loops with the for and while iteration schemes:
<name>: <name>:

for <scheme> loop [while <condition> loop
<statements> J <statements>

end loop <name>; end loop <name>;

The block and the case statement as recommended in the Ada Language Reference Manual
(Department of Defense 1983):

<name>: case <expression> is
declare when <choice> =>

<declarations> <statements>
begin when <choice> =>

<statements> <statements>
exception when others =>

when <choice> => <statements>
<statements> end case; -- <comment>

when others =>
<statements>

end <name>;

These case statements save space over the the Ada Language Reference Manual (Department of
Defense 1983) recommendation and depend on very short statement lists, respectively. Whichever you
choose, be consistent.

case <expression> is case <expression> is
when <choice> => when <choice> => <statements>

<statements> <statements>
when <choice> => when <choice> => <statements>

<statements> when others => <statements>
when others => end case;

<statements>
end case;

8 Ada QUALITY AND STYLE

The various forms of selcctive wait and the timed and conditional entry calls:
select select

when <guard> => <entry call>;
<accept statement> <statements>
<statements> or

or delay <interval>;
<accept statement> <statements>
<statements> end select;

or
when <guard> =>

delay <interval>;
<statements>

or select
when <guard> => <entry call>;

terminate; <statements>
else else

<statements> <statements>
end select; end select;

The accept statement and a subunit:
accept <specification> do separate (<parent unit>)

<statements> <proper body>
end <name>;

Proper bodies of program units:
procedure <specification> is package body <name> is

<declarations> <declarations>
begin begin

<statements> <statements>
exception exception

when <choice> => when <choice> =>
<statements> <statements>

end <name>; end <name>;

function <specification> task body <name> is
return <type name> is <declarations>
<declarations> begin

begin <statements>
<statements> exception

exception when <choice> =>
when <choice> => <statements>

<statements> end <name>;
end <name>;

Context clauses on compilation units are arranged as a table. Generic formal parameters do not obscure
the unit itself. Function, package, and task specifications use standard indentation:

with <name>; function <specification>
with <name>; return <type>;
with <name>;

package <name> is
use <name>; <declarations>

private
<compilation unit> <declarations>

end <name>;

generic task type <name> is
<formal parameters> <entry declarations.

<compilation unit> end <name>;

Instantiations of generic units and record indentation:
procedure <name> is type ... is

new <generic name> <actuals> record
<component list>

function <name> is case <discriminant name> is
new <generic name> <actuals>I when <choice> =>

<component list>
package <name> is when <choice> =>

new <generic name> <actuals> <component list>
end case;

end record;

SOURCE CODE PRESENTATION 9

Indentation for record alignment:

for <name> use
record <alignment clause>

<component clause>
end record;

example
DefaultString : constant String

"This is the long string returned by" &
"default. It is broken into multiple &
"Ada source lines for convenience.,;

loop

if InputFound then
CountCharacters;

else -- not Input_Found
Reset State;
Character Total :=

First PartTotal * FirstPartScaleFactor +
SecondPartTotal * SecondPart ScaleFactor +
Default_String'Length + DelimiterSize;

end if;

end loop;

rationale

Indentation improves the readability of the code because it gives the reader a visual indicator of the
program structure. The levels of nesting are clearly identified by indentation and the first and last
keywords in a construct can be matched visually.

While there is much discussion on the number of spaces to indent, the reason for indentation is code
clarity. The fact that the code is indented consistently is more important than the number of spaces used
for indentation.

Additionally, in Section 1.5, the Ada Language Reference Manual says that the layout shown in the
examples and syntax rules in the Ada Language Reference Manual is the recommended code layout to
be used for Ada programs. "The syntax rules describing structured constructs are presented in a form
that corresponds to the recommended paragraphing. ... Different lines are used for parts of a syntax rule
if the corresponding parts of the construct described by the rule are intended to be on different lines....
It is recommended that all indentation be by multiples of a basic step of indentation (the number of
spaces for the basic step is not defined)."

It is important to indent continuation lines differently from nested control structures to make them
visually distinct. This prevents them from obscuring the structure of the code as the user scans it.

Indenting with spaces is more portable than indenting with tabs because tab characters are displayed
differently by different terminals and printers.

automation notes

The guidelines in this section are easily enforced with an automatic code formatter.

2.1.3 Alignment of Operators

guideline

0 Align operators vertically to emphasize local program structure and semantics.

example

if SlotA >= Slot B then
Temporary : SlotA;
SlotA := SlotB;
Slot B := Temporary;

end if;

10 Ada QUALITY AND STYLE

Numerator B**2 - 4.0 * A * C;
Denominator 2.0 * A;

Solution I -B + SquareRoot(Numerator / Denominator);
Solution_2 B + SquareRoot(Numerator / Denominator);

X A* B +
caD+
E *F;

Y (A * B + C) + -- basic equation
(2.0 * D - E) -
3.5; -- account for error factor

rationale

Alignment makes it easier to see the position of the operators and, therefore, puts visual emphasis on
what the code is doing.

The use of lines and spacing on long expressions can emphasize terms, precedence of operators, and
other semantics. It can also leave room for highlighting comments within an expression.

exceptions

If vertical alignment of operators forces a statement to be broken over two lines, and especially if the
break is at an inappropriate spot, it may be preferable to relax the alignment guideline.

automation notes

The last example above shows a type of "semantic alignment" which is not typically enforced or even
preserved by automatic code formatters. If you break expressions into semantic parts and put each on a
separate line, beware of using a code formatter later. It is likely to move the entire expression to a single
line and accumulate all the comments at the end. However, there are some formatters which are
intelligent enough to leave a line break intact when the line contains a comment. A good formatter will
recognize that the last example above does not violate the guidelines and would therefore preserve it as
written.

2.1.4 Alignment of Declarations

guideline

* Use vertical alignment to enhance the readability of declarations

"* Provide at most one declaration per line.

"* Indent all declarations in a single declarative part at the same level.

instantiation

For declarations not separated by blank lines, follow these alignment rules.

- Align the colon delimeters.

- Align the initialization delimeter,

- When trailing comments are used, align the comment delimeter.

- When the declaration overflows a line, break the line and add an indentation level for those lines
that wrap. The preferred places to break, in order are: 1) The comment delimeter; 2) The
initialization delimeter; 3) The colon delimeter.

- For enumeration type declarations which do not fit on a single line, put each literal on a separate
line, using the next level of indentation. When appropriate, semantically related literals can be
arranged by row or column to form a table.

example

Variable and constant declarations can be laid out in a table with columns separated by the symbols
., and--

PromptColumn : constant 40;
Question Mark : constant String ?" -- prompt on error input
Prompt String constant String :

SOURCE CODE PRESENTATION 11

If this results in lines that are too long, they can be laid out with each part on a separate line with its
unique indentation level.

subtype UserResponseTextFrame is string (1 .. 72);

-- If the declaration needed a comment, it would fit here.
Input-Line Buffer : User ResponseText_Frame

.= Prompt String &
String (1 .. User_ResponseText_Frame'Length -

PromptString'Length => ' ');

Declarations of enumeration literals can be listed in one or more columns as:

type Op CodesIn Column is
(Push,
Pop,
Add,
Subtract,
Multiply,
Divide,
SubroutineCall,
SubroutineReturn,
Branch,
Branch_On Zero,
BranchOnNegative);

or, to save space:
type Op CodesMultipleColumns is

(Push, Pop, Add,
Subtract, Multiply, Divide,
SubroutineCall. SubroutineReturn, Branch,
BranchOnZero, Branch On Negative);

or, to emphasize related groups of values:
type Op CodesInTable is

(Push, Pop,
Add, Subtract, Multiply, Divide,
Subroutine_Call, SubroutineReturn,
Branch, BranchOn_Zero, BranchOnNegative);

rationale

Many programming standards documents require tabular repetition of names, types, initial values, and
meaning in unit header comments. These comments are redundant and can become inconsistent with
the code. Aligning the declarations themselves in tabular fashion (see the examples above) provides
identical information to both compiler and reader, enforces at most one declaration per line, and eases
maintenance by providing space for initializations and necessary comments. A tabular layout enhances
readability, thus preventing names from "hiding" in a mass of declarations. This applies to type
declarations as well as object declarations.

automation notes

Most of the guidelines in this section are easily enforced with an automatic code formatter. The one
exception is the last enumerated type example, which is laid out in rows based on the semantics of the
enumeration literals. An automatic code formatter will not be able to do this, and will likely move the
enumeration literals to different lines. However, tools that are only checking for violations of the
guidelines should accept the tabular form of an enumeration type declaration.

2.1.5 More on Alignment
guideline

0 Align parameter modes and parentheses vertically.

Instantlation

Specifically it is recommended that you:

- Place one formal parameter specification per line.

12 Ada QUALITY AND STYLE

- Vertically align parameter names, colons, the reserved word in, the reserved word out, and
parameter types.

- Place the first parameter specification on the same line as the subprogram or entry name. If any of
the parameter types are forced beyond the line length limit, place the first parameter specification
on a new line indented as for continuation lines.

example
procedure DisplayMenu (Title : in String;

Options : in Menus;
Choice out AlphaNumerics);

or
procedure Display-MenuOn PrimaryWindow

(Title : in String;
Options : in Menus;
Choice out AlphaNumerics);

or
procedure DisplayMenuOnScreen

Title : in String;
Options in Menus;
Choice out Alpha Numerics

Aligning parentheses makes complicated relational expressions more clear:
if not (First_Character in Alpha Numerics and then

ValidOption(First_Character)) then

rationale

This facilitates readability and understandability. Aligning parameter modes provides the effect of a
table with columns for parameter name, mode, type, and, if necessary, parameter-specific comments.
Vertical alignment of parameters across subprograms within a compilation unit increases the readability
even more.

note

Various options are available for subprogram layout. The second example above aligns all of the
subprogram names and parameter names in a program.This has the disadvantage of occupying an
unnecessary line where subprogram names are short and looking awkward if there is only one
parameter.

The third example is a format commonly used to reduce the amount of editing required when parameter
lines are added, deleted, or reordered. The parentheses don't have to be moved from line to line.
However, the last parameter line is the only one without a semicolon.

automation notes

Most of the guidelines in this section are easily enforced with an automatic code formatter. The one
exception is the last example, which shows vertical alignment of parentheses to emphasize terms of an
expression. This is difficult to achieve with an automatic code formatter unless the relevant terms of the
expression can be determined strictly through operator precedence.

2.1.6 Blank Lines

guideline

* Use blank lines to group logically related lines of text (NASA 1987).

example
if ... then

for ... loop

end loop;

end if;

SOURCE CODE PRSNA IIUIN IJ

This example separates different kinds of declarations with blank lines:
type Employee Record is

record
Legal Name : Name;
Date Of Birth : Date;
Date_Of Hire Date;
Salary Money;

end record;

type Day is
(Monday, Tuesday, Wednesday, Thursday, Friday,
Saturday, Sunday);

subtype Weekday is Day range Monday .. Friday;
subtype Weekend is Day range Saturday Sunday;

rationale

When blank lines are used in a thoughtful and consistent manner, sections of related code are more
visible to readers.

automation notes

Automatic formatters do not enforce this guideline well because the decision on where to insert blank
lines is a semantic one. However, many formatters have the ability to leave existing blank lines intact.
Thus, you can manually insert the lines and not lose the effect when you run such a formatter.

2.1,7 Pagination

guideline

* Highlight the top of each package or task specification, the top of each program unit body, and the
end statement of each program unit.

Instantiation

Specifically, it is recommended that you:

- Use file prologues, specification headers, and body headers to highlight those structures as
recommended in Guideline 3.3.

- Use a line of dashes, beginning at the same column as the current indentation to highlight the
definition of subunits embedded in a declarative part. Insert the line of dashes immediately before
and immediately after the definition.

- If two dashed lines are adjacent, omit the longer of the two.

example
with BasicTypes;

package body SPCNumeric Types is

function Max
(Left : in Basic Types.TinyInteger;
Right : in Basic Types.TinyInteger)

return BasicTypes.TinyInteger is
begin

if Right < Left then
return Left;

else
return Right;

end if;
end Max;

I

14 Ada QUALITY AND STYLE

function Min
(Left in Basic Types.TinyInteger;
Right in Basic Types.Tiny Integer)

return BasicTypes.TinyInteger is
begin

if Left < Right then
return Left;

else
return Right;

end if;
end Min;

use BasicTypes;

begin -- SPC_Numeric Types
Max_TinyInteger Min(SystemMax, Local-Max);
MinTinyInteger Max(SystemMin, LocalMin);

end SPCNumeric Types;

rationale

It is easy to overlook parts of program units that are not visible on the current page or screen. The page
lengths of presentation hardware and software vary widely. By clearly marking the program's logical
page boundaries (e.g., with a dashed line), you enable a reader to quickly check whether all of a
program unit is visible. Such pagination also makes it easier to scan a large file quickly, looking for a
particular program unit.

note

This guideline does not address code layout on the physical "page" because the dimensions of such
pages vary widely and no single guideline is appropriate.

automation notes

The guidelines in this section are easily enforced with an automatic code formatter.

2.1.8 Number of Statements Per Line
guideline

"* Start each statement on a new line.

"* Write no more than one simple statement per line.

"* Break compound statements over multiple lines.

example

Use

if EndOfFile then
Close_File;

else
GetNext Record;

end if;

rather than
if EndOfFile then CloseFile; else Get_Next_Record; end if;

exceptional case

Put("A="); NaturalIO.Put(A); NewLine;
Put("B=") ; Natural_IO.Put(B) ; NewLine;
Put("C="); NaturalIO.Put(C); New_Line;

rationale

A single statement on each line enhances the reader's ability to find statements and helps prevent
statements being missed. Similarly, the structure of a compound statement is clearer when its parts are
on separate lines.

SOURCE CODE PRESENTATION 15

note

If a statement is longer than the remaining space on the line, continue it on the next line. This guideline
includes declarations, context clauses, and subprogram parameters.

According to the Ada Language Reference Manual (Department of Defense 1983), "The preferred
places for other line breaks are after semicolons."

exceptions

The example of Put and Newline statements shows a legitimate exception. This grouping of closely
related statements on the same line makes the structural relationship between the groups clear.

automation notes

The guidelines in this section are easily enforced with an automatic code formatter, with the single
exception of the last example which shows a semantic grouping of multiple statements onto a single line.

2.1.9 Source Code Line Length

guideline
0 Adhere to a maximum line length limit for source code (Nissen and Wallis 1984, §2.3).

instantiation

Specifically, it is recommended that you:

- Limit source code line lengths to a maximum of 72 characters.

rationale

When Ada code is ported from one system to another, there may be restrictions on the record size of
source line statements possibly for one of the following reasons: some operating systems may not support
variable length records for tape I/O or some printers and terminals support an 80-character line width
with no line-wrap. See further rationale in the note for Guideline 7.1.1.

Source code must sometimes be published for various reasons, and letter-size paper is not as forgiving as
a computer listing in terms of the number of usable columns.

In addition, there are human limitations in the width of the field of view for understanding at the level
required for reading source code. These limitations correspond roughly to the 70 to 80 column range.

automation notes

The guidelines in this section are easily enforced with an automatic code formatter.

2.2 SUMMARY

code formatting

* Use consistent spacing around delimiters.

* Use the same spacing as you would in regular prose.

* Indent and align nested control structures, continuation lines, and embedded units consistently.

* Distinguish between indentation for nested control structures and for continuation lines.

* Use spaces for indentation, not the tab character (Nissen and Wallis 1984, §2.2).

* Align operators vertically to emphasize local program structure and semantics.

* Use vertical alignment to enhance the readability of declarations.

* Provide at most one declaration per line.

* Indent all declarations in a single declarative part at the same level.

* Align parameter modes and parentheses vertically.

* Use blank lines to group logically related lines of text (NASA 1987).

16 Ada QUALITY AND STYLE

"• Highlight the top of each package or task specification, the top of each program unit body, and the
end statement of each program unit.

"• Start each statement on a new line.
"* Write no more than one simple statement per line.
"* Break compound statements over multiple lines.

"* Adhere to a maximum line length limit for source code (Nissen and Wallis 1984, §2.3).

CHAPTER 3
Readability

This chapter recommends ways of using Ada features to make reading and 'nderstanding code easier. There
are many myths about comments and readability. The responsibility for true readability rests more with
naming and code structure than with comments. Having as many comment lines as code lines does not imply
readability; it more likely indicates the writer does not understand what is important to communicate.

3.1 SPELLING

Spelling conventions in source code include rules for capitalization, use of underscores, and use of
abbreviations. If these conventions are followed consistently, the resulting code is clearer and more
readable.

3.1.1 Use of Underscores

guideline

0 Use underscores to separate words in a compound name.

example
MilesPerHour
EntryValue

rationale

When an identifier consists of more than one word, it is much easier to read if the words are separated
by underscores. Indeed, there is precedent in English in which compound words are separated by a
hyphen. In addition to promoting readability of the code, if underscores are used in name,, a code
formatter has more control over altering capitalization. See Guideline 3.1.3.

3.1.2 Numbers

guideline

"* Represent numbers in a consistent fashion.

"* Represent literals in a radix appropriate to the problem.

"* Use underscores to separate digits the same way commas or periods (or spaces for nondecimal
bases) would be used in handwritten text.

"* When using scientific notation, make the E consistently either upper or lower case.

" In an alternate base, represent the alphabetic characters in either all upper case or all lower case.

17

18 Ada QUALITY AND STYLE

instantiation

- Decimal and octal numbers are grouped by threes beginning counting on either side of •iie radix

point.

- The E is always capitalized in scientific notation.

- Use upper case for the alphabetic characters representing digits in bases above 10.

- Hexadecimal numbers are grouped by fours beginning counting on either side of the radix point.

example
type MaximumSamples is range 1 . 1_000000;
type Legal_HexAddress is range 16#0000# . 18#FFFF#;
type LegalOctalAddress is range 8#000_000# . 8#777_777#;

AvogadroNumber : constant := 8.022 189E+23;

To represent the number 1/3 as a constant, use

OneThird : constant := 1.0 / 3.0;

Avoid this use.

OneThirdAsDecimalApproximation : constant = 0.333_333_333_333_33;

or
OneThirdBase_3 : constant := 3#0.1#; -- Yes, it really works!

rationale

Consistent use of upper case or lower case aids scanning for numbers. Underscores serve to group
portions of numbers into familiar patterns. Consistency with common use in everyday contexts is a large
part of readability.

note

If a rational fraction is represented in a base in which it has a terminating rather than repeating
representation, as 3#0. 1# does in the example above, it may have increased accuracy upon conversion to
the machine base.

3.1.3 Capitalization
guideline

0 Make reserved words and other elements of the program visually distinct from each other.

Instantiation

- Use lower case for all reserved words (when used as reserved words).

- Use mixed case for all other identifiers, a capital letter beginning every word separated by
underscores.

- Use upper case for abbreviations and acronyms (see automation note).

example

type Second_Of_Day is range 0 .. 86_400;
type Noon_RelativeTime is (Before Noon. AfterNoon. High Noon);

subtype Morning is SecondOf_Day range 0 .. 86_400 / 2 - 1;
subtype Afternoon is SecondOfDay range Morning'Last + 2 .. 86_400;

Current-Time := SecondOfDay(Calendar.Seconds(Calendar.Clock));

READABILITY 19

if CurrentTime in Morning then
TimeOfDay := BeforeNoon;

elsif Current Time in Afternoon then
TimeOfDay AfterNoon;

else
TimeOf Day High_Noon;

end if;

case Time Of Day is
when BeforeNoon => Get ReadyForLunch;
when HighNoon => EatLunch;
when AfterNoon => GetToWork;

end case;

rationale
Visually distinguishing reserved words allows the reader to focus on program structure alone, if desired,

and also aids scanning for particular identifiers.

The instantiation chosen here is meant to be more readable for the experienced Ada programmer, who
does not need reserved words to leap off the page. Beginners to any language often find that reserved
words should be emphasized to help them find the control structures more easily. Because of this,
instructors in the classroom and books introducing the Ada language may want to consider an
alternative instantiation. It should be instructive to note that the Ada Language Reference Manual
chose to bold all reserved words. Upper case for reserved words may also be suitable.

note
In Section 2.1, Nissen and Wallis (1984) states that "The choice of case is highly debatable, and that
chosen for the [Ada Language Reference Manual (Department of Defense 1983)) is not necessarily the
best. The use of lower case for reserved words is often preferred, so that they do not stand out too much.
However, lower case is generally easier to read than upper case; words can be distinguished by their
overall shape, and can be found more quickly when scanning the text."

automation note
Ada names are not case sensitive. Therefore the names maxlimit, MAXLIMIT, and Max_Limit denote the
same object or entity. A good code formatter should be able to automatically convert from one style to
another as long as the words are delimited by underscores.

As recommended in Guideline 3.1.4, abbreviations should be project wide. An automated tool should
allow a project to specify those abbreviations and format them accordingly.

3.1.4 Abbreviations
guideline

"• Do not use an abbreviation of a long word as an identifier where a shorter synonym exists.

"• Use a consistent abbreviation strategy.

"* Do not use ambiguous abbreviations.

* An abbreviation must save many characters over the full word to be justified.

• Use abbreviations that are well-accepted in the application domain.

* Maintain a list of accepted abbreviations and use only abbreviations on that list.

example

Use Time Of Receipt rather than RecdTime or RTime.

But in an application that commonly deals with message formats that meet military standards,
DODSTDMSG FMT is an acceptable abbreviation for:

Department_Of_DefenseStandardMessageFormat.

20 Ada QUALITY AND STYLE

rationale

Many abbreviations are ambiguous or unintelligible unless taken in context. As an example, Temp could
indicate either temporary or temperature. For this reason, you should choose abbreviations carefully
when you use them. The rationale in Guideline 8.1.2 provides a more thorough discussion of how
context should influence the use of abbreviations.
Since very long variable names can obscure the structure of the program, especially in deeply nested
(indented) control structures, it is a good idea to try to keep identifiers short and meaningful. Use short
unabbreviated names whenever possible. If there is no short word which will serve as an identifier, then
a well known unambiguous abbreviation is the next best choice, especially if it comes from a list of
standard abbreviations used throughout the project.

An abbreviated format for a fully qualified name can be established via the renames clause. This
capability is useful when a very long, fully qualified name would otherwise occur many times in d
localized section of code (see Guideline 5.7.2).

A list of accepted abbreviations for a project provides a standard context for using each abbreviation.

3.2 NAMING CONVENTIONS

Choose names that clarify the object's or entity's intended use. Ada allows identifiers to be any length as
long as the identifier fits on a line with all characters being significant (including underscores). Identifiers are
the names used for variables, constants, program units, and other entities within a program.

3.2.1 Names

guideline

"* Choose names that are as self-documenting as possible.

"* Use a short synonym instead of an abbreviation (see Guideline 3.1.4).
"* Use names given by the application but not obscure jargon.

example

In a tree-walker, using the name Left instead of LeftBranch is sufficient to convey the full meaning
given the context. However, use TimeOfDay instead of TOD.

Mathematical formulas are often given using single-letter names for variables. Continue this convention
for mathematical equations where it would recall the formula; for example:

A*(X**2) + B*X + C.

rationale

A program that follows these guidelines can be more easily comprehended. Self-documenting names
require fewer explanatory comments. Empirical studies have shown that you can further improve
comprehension if your variable names are not excessively long (Schneiderman 1986, 7). The context
and application can help greatly. The unit of measure for numeric entities can be a source of type
names.

note

See Guideline 8.1.2 for a discussion on how to use the application domain as a guideline for selecting
abbreviations.

3.2.2 Type Names

guideline

"* Use singular, general nouns as (sub)type identifiers.

"• Choose identifiers that describe one of the (sub)type's values.

"* Do not use identifier constructions (e.g., suffixes) that are unique to (sub)type identifiers.

"• Do not use the type names from predefined packages.

READABILITY 21

example
type Day is

(Monday, Tuesday, Wednesday, Thursday, Friday,
Saturday, Sunday);

type Day Of Month is range 0 31;
type Month Number is range 1 12;
type HistoricalYear is range -6_000 2_500;

type Date is
record

Day Day Of_Month;
Month : Month_Number;
Year HistoricalYear;

end record;

In particular, Day should be used in preference to Days or DayType;

The identifier Historical Year might appear to be specific, but it is actually general, with the adjective,
historical, describing the range constraint.

rationale

When this style and the suggested style for i.bject identifiers are used, program code more closely
resembles English (see Guideline 3.2.3). Furthermore, this style is consistent with the names of the
language's predefined identifiers. They are not named Integers, Booleans, IntegerType, or
Boolean-Type.

However, using the iiame of a type from the predefined packages is sure to confuse a programmer when
that type appears somewhere without a package qualification.

3.2.3 Object Names

guideline

"* Use predicate clauses or adjectives for boolean objects.

"* Use singular, specific nouns as object identifiers.

"* Choose identifiers that describe the object's value during execution.

"• Use singular, general nouns as identifiers for record components.

example
Nonboolean objects:

Today Day;
Yesterday Day;
RetirementDate Date;

Boolean objects:
User_Is_Available Boolean; -- predicate clause
List IsEmpty : Boolean; -- predicate clause
Empty : Boolean; -- adjective
Bright Boolean; -- adjective

rationale

Using specific nouns for objects establishes a context for understanding the object's value, which is one
of the general values described by the (sub)type's name (Guideline 3.2.2). Object declarations become
very English-like with this style. For example, the first declaration above is read as "Today is a Day."

General nouns, rather that specific, are used for record components because a record object's name will
supply the context for understanding the component. Thus, the following component is understood as
"the year of retirement.":

RetirementDate.Year

Following conventions which relate object types and parts of speech makes code read more like text.
For example, because of the names chosen, the following code segment needs no comments:

m= i m m mmm mm l I Im m •llmm m•811 IMI ii j

22 Ada QUALITY AND STYLE

if List_Is_Empty then
Number_Of_Elements 0;

else
NumberOf Elements := LengthOfList;

end if;

note

If it is difficult to find a specific noun that describes an object's value during the entire execution of a
program, the object is probably serving multiple purposes. Multiple objects should be used in such a
case

3.2.4 Program Unit Names

guideline

"* Use action verbs for procedures and entries.

"* Use predicate-clauses for boolean functions.

* Use nouns for nonboolean functions.

"* Give packages names that imply higher levels of organization than subprograms. Generally, these
are noun phrases that describe the abstraction provided.

"• Give tasks names that imply an active entity.

"* Name generic subprograms as if they were nongeneric subprograms.

"* Name generic packages as if they were nongeneric packages.

"• Make the generic names more general than the instantiated names.

example

The following are sample names for elements that comprise an Ada program.

Sample procedure names:

procedure GetNextToken -- get is a transitive verb
procedure Create -- create is a transitive verb

Sample function names for boolean-valued functions:

function IsLastItem -- predicate clause
function IsEmpty -- predicate clause

Sample function names for nonboolean-valued functions:

function successor -- common noun
function Length -- attribute
function Top -- component

Sample package names:
package Terminal is -- common noun
package TextUtilities is -- common noun

Sample task names:
task TerminalResourceManager is -- common noun that shows action

Below is a sample piece of code to show the clarity that results from using these conventions the
parts-of-speech naming conventions.

GetNextToken(CurrentToken);

case Current Token is
when Identifier => ProcessIdentifier;
when Numeric => Process-Numeric;

end case; -- Current-Token

READABILITY 23

if IsEmpty(Current_List) then
NumberOfElements := 0;

else
Number_Of_Elements Length(Current List);

end if;

When packages and their subprograms are named together, the resulting code is very descriptive.
if Stack.IsEmpty(Current_List) then

CurrentToken := Stack.Top(currentList);
end if;

rationale

Using these naming conventions creates understandable code that reads much like natural language.
When verbs are used for actions, such as subprograms, and nouns are used for objects, such as the data
that the subprogram manipulates, code is easier to read and understand. This models a medium of
communication already familiar to a reader. Where the pieces of a program model a real-life situation,
using these conventions reduces the number of translation steps involved in reading and understanding
the program. In a sense, your choice of names reflects the level of abstraction from computer hardware
toward application requirements.

note

There are some conflicting conventions in current use for task entries. Some programmers and designers
advocate naming task entries with the same conventions used for subprograms to blur the fact that a task
is involved. Their reasoning is that if the task is reimplemented as a package, or vice versa, the names
need not change. Others prefer to make the fact of a task entry as explicit as possible to ensure that the
existence of a task with its presumed overhead is recognizable. Project-specific priorities may be useful
in choosing between these conventions.

3.2.5 Constants and Named Numbers

guideline
"* Use symbolic values instead of literals wherever possible.

"* Use constants instead of variables fur constant values.

"* Use named numbers instead of constants when possible.

"* Use named numbers to replace numeric literals whose type or context is truly universal.

"* Use constants for objects whose values cannot change after elaboratln (United Technologies
1987).

"* Show relationships between symbolic values by defining them with static expressions.

"* Use linearly independent sets of literals.

"* Use attributes like 'First and 'Last instead of literals wherever possible.

example
3.141_592_653_589_793 -- literal
Max constant Integer 65_535; -- constant
Pi : constant 3.141_592; -- named number
PI /2 -- static expression
PI -- symbolic value

Declaring Pi as a named number allows it to be referenced symbolically in the assignment statement
below:

Area := Pi * Radius**2; -- if radius is known.

instead of
Area :- 3.141_59 0 Radius**2; -- Needs explanatory comment.

Also, ASCII.Bel is more expressive than Character'val(8#007#).

Clarity of constant and named number declarations can be improved by using other constant and named
numbers. For example:

24 Ada QUALITY AND STYLE

Bytes Per Page constant 512;
Pages PerBuffer : constant 10;
Buffer-Size constant PagesPerBuffer * Bytes PerPage;

is more self-explanatory and easier to maintain than
Buffer-Size : constant := 5_120; -- ten pages

The following literals should be constants:
if New-Character = 'S" then ". constant" that may change

"if Current-Column - 7 then ". constant" that may change

rationale

Using identifiers instead of literals makes the purpose of expressions clear reducing the need for
comments. Constant declarations consisting of expressions of numeric literals are safer since they do not
need to be computed by hand. They are also more enlightening than a single numeric literal since there
is more opportunity for embedding explanatory names. Clarity of constant declarations can be improved
further by using other related constants in static expressions defining new constants. This is not less
efficient because static expressions of named numbers are computed at compile time.

A constant has a type. A named number can only be a universal type: universal integer or universal real.
Strong typing is enforced for identifiers but not literals. Named numbers allow compilers to generate
more efficient code than for constants and to perform more complete error checking at compile time. If
the literal contains a large number of digits (as Pi in the example above), the use of an identifier reduces
keystroke errors. If keystroke errors occur, they are easier to locate either by inspection or at compile
time.

Linear independence of literals means that the few literals that are used do not depend on one another
and that any relationship between constant or named values is shown in the static expressions. Linear
independence of literal values gives the property that if one literal value changes, all of the named
numbers of values dependent on that literal are automatically changed.

note

There are some gray areas where the literal is actually more self-documenting than a name. These are
application-specific and generally occur with universally familiar, unchangeable values such as the
following relationship:

Fahrenheit := 32.0 + (9.0 * Celsius) / 5.0;

3.3 COMMENTS
Ada comments can be either beneficial or harmful to software maintainers. They can be beneficial by
explaining aspects of the code that are otherwise not readily apparent. They can be harmful by containing
inaccurate information and by being too numerous and not visually distinct enough, which can cause them to
obscure the structure of the code.

Comments should be minimized. They should provide needed information that cannot be expressed in the
Ada language, emphasize the structure of code, and draw attention to deliberate and necessary violations of
the guidelines. Comments are present either to draw attention to the real issue being exemplified or to
compensate for incompleteness in the example program.

Maintenance programmers need to know the causal interaction of noncontiguous pieces of code to get a
global, more or less complete sense of the program. They typically acquire this kind of information from
mental simulation of parts of the code. Comments should be sufficient enough to support this process
(Soloway et al. 1986).

This section presents general guidelines about how to write good comments. It then defines several different
classes of comments with guidelines for the use of each. The classes are: file headers, program unit
specification headers, program unit body headers, data comments, statement comments, and marker
comments.

READABILITY 25

3.3.1 General Comments
guideline

"* Make the code as clear as possible to reduce the need for comments.

"* Never repeat information in a comment which is readily available in the code.

"* Where a comment is required, make it concise and complete.

* Use proper grammar and spelling in comments.

* Make comments visually distinct from the code.

• Structure comments in headers so that information can be automatically extracted by a tool.

rationale

The structure and function of well written code is clear without comments. Obscure or badly structured
code is hard to understand, maintain, or reuse regardless of comments. Bad code should be improved,
not explained. Reading the code itself is the only way to be absolutely positive about what the code does.
Therefore, the code should be made as readable as possible.

Using comments to duplicate information in the code is a bad idea for several reasons. First, it is
unnecessary work that decreases productivity. Second, it is very difficult to correctly maintain the
duplication as the code is modified. When changes are made to existing code, it is compiled and tested
to make sure that it is once again correct. However, there is no automatic mechanism to make sure that
the comments are correctly updated to reflect the changes. Very often, the duplicate information in a
comment becomes obsolete at the first code change and remains so through the life of the software.
Third, when comments about an entire system are written from the limited point of view of the author of
a single subsystem, the comments are often incorrect from the start.

Comments are necessary to reveal information difficult or impossible to obtain from the code.
Subsequent sections of this book contain examples of such comments. Completely and concisely present
the required information.

The purpose of comments is to help readers understand the code. Misspelled, ungrammatical,
ambiguous, or incomplete comments defeat this purpose. If a comment is worth adding, it is worth
adding correctly in order to increase its usefulness.

Making comments visually distinct from the code, by indenting them, grouping them together into
headers, or highlighting them with dashed lines is useful because it makes the code easier to read.
Subsequent sections of this book elaborate on this point.

automation note

The guideline about storing redundant information in comments applies only to manually generated
comments. There are tools which automatically maintain information about the code (e.g., calling units,
called units, cross-reference information, revision histories, etc.), storing it in comments in the same file
as the code. Other tools read comments, but do not update them, using the information from the
comments to automatically generate detailed design documents and other reports.

The use of such tools is encouraged, and may require that you structure your header comments so they
can be automatically extracted and/or updated. Beware that tools which modify the comments in a file
are only useful if they are executed frequently enough. Automatically generated obsolete information is
even more dangerous than manually generated obsolete information, because it is more trusted by the
reader.

Revision histories are maintained much more accurately and completely by configuration management
tools. With no tool support, it is very common for an engineer to make a change and forget to update the
revision history. If your configuration management tool is capable of maintaining revision histories as
comments in the source file, then take advantage of that capability, regardless of any compromise you
might have to make about the format or location of the revision history. It is better to have a complete
revision history appended to the end of the file than to have a partial one formatted nicely and
embedded in the file header.

26 Ada QUALITY AND STYLE

3.3.2 File Headers
guideline

"* Put a file header on each source file.

"* Place ownership, responsibility, and history information for the file in the file header.

Instantiation

- Put a copyright notice in the file header.

- Put the author's name and department in the file header.

- Put a revision history in the file header, including a summary of each change, the date, and the
name of the person making the change.

example

-- Copyright (c) 1991, Software Productivity consortium, Inc.
-- All rights reserved.

-- Author: J. Smith

-- Department:System Software Department

-- Revision History:
-- 7/9/91 J. Smith
-- - Added function Size Of to support queries of node sizes.
-- - Fixed bug in Set_Size which caused overlap of large nodes.
-- 7/1/91 U. Jones
-- - Optimized clipping algorithm for speed.
-- 6/25/91 J. Smith
-- - Original version.

rationale

Ownership information should be present in each file if you want to be sure to protect your rights to the
software. Furthermore, for high visibility, it should be the very first thing in the file.

Responsibility and revision history information should be present in each file for the sake of future
maintainers, this is the header information most trusted by maintainers because it accumulates. It does
not evolve. There is no need to ever go back and modify the author's name or the revision history of a
file. As the code evolves, the revision history should be updated to reflect each change. At worst, it will
be incomplete, it should rarely be wrong. Also, the number and frequency of changes and the number of
different people who made the changes over the history of a unit can be good indicators of the integrity
of the implementation with respect to the design.

Information about how to find the original author should be included in the file header, in addition to
the author's name, to make it easier for maintainers to find the author in case questions arise. However,
detailed information like phone numbers, mail stops, office numbers, and computer account usernames
are too volatile to be very useful. It is better to record the department for which the author was working
when the code was written. This information is still useful if the author moves offices, changes
departments, or even leaves the company, because the department is likely to retain responsibility for
the original version of the code.

3.3.3 Program Unit Specification Header

guideline

"* Put a header on the specification of each program unit.

"* Place information required by the user of the program unit in the specification header.

* Do not repeat information (except unit name) in the specification header which is present in the
specification.

* Explain what the unit does, not how or why it does it.

READABILITY 27

"* Describe the complete interface to the program unit, including any exceptions it can raise and any
global effects it can have.

"• Do not include information about how the unit fits into the enclosing software system.

"* Describe the performance (time and space) characteristics of the unit.

instantiation

- Put the name of the program unit in the header.

- Briefly explain the purpose of the program unit.

- For packages, describe the effects of the visible subprograms on each other, and how they should be
used together.

- List all exceptions which can be raised by the unit.

- List all global effects of the unit.

- List preconditions and postconditions of the unit.

- List hidden tasks activated by the unit.

- Do not list the names of parameters of a subprogram.

- Do not list the names of package subprograms just to list them.

- Do not list the names of all other units used by the unit.

- Do not list the names of all other units which use the unit.

example

-- AUTOLAYOUT

-- Purpose:
-- This package computes positional information for nodes and arcs
-- of a directed graph. It encapsulates a layout algorithm which is
-- designed to minimize the number of crossing arcs and to emphasize
-- the primary direction of arc flow through the graph.

-- Effects:
-- - The expected usage is:
-- I. Call Define for each node and arc to define the graph.
-- 2. Call Layout to assign positions to all nodes and arcs.
-- 3. Call Position of for each node and arc to determine the
-- assigned coordinate positions.
-- - Layout can be called multiple times, and recomputes the
-- positions of all currently defined nodes and arcs each time.
-- - Once a node or arc has been defined, it remains defined until
-- Clear is called to delete all nodes and arcs.

-- Performance:
-- This package has been optimized for time, in preference to space.
-- Layout times are on the order of N*log(N) where N is the number
-- of nodes, but memory space is used inefficiently.

package Autolayout is

-- Define

-- Purpose:
-- This procedure defines one node of the current graph.
-- Exceptions:
-- NodeAlreadyDefined

procedure Define
(New Node : in Node);

-- Layout

28 Ada QUALITY AND STYLE

-- Purpose:
-- This procedure assigns coordinate positions to all defined
-- nodes and arcs.
-- Exceptions:
-- None.

procedure Layout;

-- Positionof

-- Purpose:
-- This function returns the coordinate position of the
-- specified node. The default position (0,0) is returned if no
-- position has been assigned yet.
-- Exceptions:
-- Node Not Defined

function PositionOf (Current : in Node)
return Position;

end Autolayout;

rationale

The purpose of a header comment on the specification of a program unit is to help the user understand
how to use the program unit. From reading the program unit specification and header, a user should
know everything necessary to use the unit. It should not be necessary to read the body of the program
unit. Therefore, there should be a header comment on each program unit specification, and each
header should contain all usage information not expressed in the specification itself. Such information
includes the units' effect on each other and on shared resources, exceptions raised, and time/space
characteristics. None of this information can be determined from the Ada specification of the program
unit.

When you duplicate information in the header that can be readily obtained from the specification, the
infor nation tends to become incorrect during maintenance. For example, do not make a point of listing
all parameter names, modes, or types when describing a procedure. This information is already
available from the procedure specification. Similarly, do not list all subprograms of a package in the
header unless this is necessary to make some important statement about the subprograms.

Do not include information in the header which the user of the program unit doesn't need. In particular,
do not include information about how a program unit performs its function or why a particular algorithm
was used. This information should be hidden in the body of the program unit to preserve the abstraction
defined by the unit. If the user knows such details and makes decisions based on that information, the
code may suffer when that information is later changed.

When describing the purpose of the unit, avoid referring to other parts of the enclosing software system.
It is better to say "this unit does ... " than to say "this unit is called by Xyz to do." The unit should be
written in such a way that it does not know or care which unit is calling it. This makes the unit much
more general purpose and reusable. In addition, information about other units is likely to become
obsolete and incorrect during maintenance.

Include information about the performance (time and space) characteristics of the unit. Much of this
information is not present in the Ada specification, but it is required by the user. To integrate the unit
into a system, the user needs to understand the resource usage (CPU, memory, etc.) of the unit. It is
especially important to note when a subprogram call causes activation of a task hidden in a package
body, the task may continue to consume resources after the subroutine ends.

exception

Where a group of program units are closely related or simple to understand, it is acceptable to use a
single header for the entire group of program units. For example, it makes sense to use a single header to
describe the behavior of Max and Min functions; Sin, Cos, and Tan functions; or a group of functions to
query related attributes of an object encapsulated in a package. This is especially true when each
function in the set is capable of raising the same exceptions.

I

READABILITY 29

3.3.4 Program Unit Body Header

guideline

"* Place information required by the maintainer of the program unit in the body header.

"• Explain how and why the unit performs its function, not what the unit does.

* Do not repeat information (except unit name) in the header that is readily apparent from reading
the code.

• Do not repeat information (except unit name) in the body header that is available in the
specification header.

instantiation

- Put the name of the program unit in the header.

- Record portability issues in the header.

- Summarize complex algorithms in the header.

- Record reasons for significant or controversial implementation decisions.

- Record discarded implementation alternatives, along with the reason for discarding them.

- Record anticipated changes in the header, especially if some work has already been done to the
code to make the changes easy to accomplish.

example

-- Autolayout

-- Implementation Notes:
-- - This package uses a heuristic algorithm to minimize the number
-- of arc crossings. It does not always achieve the true minimum
-- number which could theoretically be reached. However it does a
-- nearly perfect job in relatively little time. For details about
-- the algorithm, see ...

-- Portability Issues:
-- - The native math package Math_Lib is used for computations of
-- coordinate positions.
-- - 32-bit integers are required.
-- - No operating system specific routines are called.

-- Anticipated Changes:

-- - Coordinate_Type below could be changed from integer to float
-- with little effort. Care has been taken to not depend on the
-- specific characteristics of integer arithmetic.

package body Autolayout is

-- Define

-- Implementation Notes:
-- - This routine stores a node in the general purpose Graph data
-- structure, not the Fast Graph structure because ...

procedure Define
(New Node : in Node) is

begin

end Define;

-- Layout

30 Ada QUALITY AND STYLE

-- Implementation Notes:
-- - This routine copies the Graph data structure (optimized for
-- fast random access) into the Fast Graph data structure
-- (optimized for fast sequential iteration), then performs the
-- layout, and copies the data back to the Graph structure. This
-- technique was introduced as an optimization when the algorithm
-- was found to be too slow, and it produced an order of
-- magnitude improvement.

procedure Layout is
begin

end Layout;

-- PositionOf

function Position Of (Current : in Node)
return Position is

begin

end PositionOf;

end Autolayout;

rationale

The purpose of a header comment on the body of a program unit is to help the maintainer of the
program unit to understand the implementation of the unit, including tradeoffs among different
techniques. Be sure to document all decisions made during implementation to prevent the maintainer
from making the same mistakes you made. One of the most valuable comments to a maintainer is a clear
description of why a change being considered will not work.

The header is also a good place to record portability concerns. The maintainer may have to port the
software to a different environment and will benefit from a list of nonportable features. Furthermore,
the act of collecting and recording portability issues focuses attention on these issues and may result in
more portable code from the start.

Summarize complex algorithms in the header if the code is difficult to read or understand without such a
summary, but do not merely paraphrase the code. Such duplication is unnecessary and hard to
maintain. Similarly, do not repeat the information from the header of the program unit specification.

note

It is often the case that a program unit is self-explanatory enough that it requires no body header to
explain how it is implemented or why. In such a case, omit the header entirely, as in the case with
Positionof above. Be sure, however, that the header you omit truly contains no information. For
example, consider the difference between the two header sections:

-- Implementation Notes: None.

and
-- NonPortable Features: None.

The first is a message from the author to the maintainer saying "I can't think of anything C..e to tell
you," while the second may mean "I guarantee that this unit is entirely portable."

3.3.5 Data Comments

guideline

"* Comment on all data types, objects, and exceptions unless their names are self-explanatory.

"* Include information on the semantic structure of complex pointer-based data structures.

"* Include information about relationships that are maintained between data objects.

"* Do not include comments that merely repeat the information in the name.

READABILITY 31

example

Objects can be grouped by purpose and commented as:

-- Current position of the cursor in the currently selected text
-- buffer, and the most recent position explicitly marked by the
-- user.

-- Note: It is necessary to maintain both current and desired
-- column positions because the cursor cannot always be
-- displayed in the desired position when moving between
-- lines of different lengths.

DesiredColumn : Column_Counter;
CurrentColumn : Column_Counter;
CurrentRow : RowCounter;
Marked Column : ColumnCounter;
Marked Row : Row_Counter;

The conditions under which an exception is raised should be commented:

-- Exceptions

Node_AlreadyDefined : exception; -- Raised when an attempt is made
to define a node with an

-- I identifier which already
--I defines a node.

NodeNot Defined : exception; -- Raised when a reference is
-- I made to a node which has

not been defined.

Here is a more complex example, involving multiple record and access types which are used to form a
complex data structure:

-- These data structures are used to store the graph during the
-- layout process. The overall organization is a sorted list of
"-- "ranks," each containing a sorted list of nodes, each containing
-- a list of incoming arcs and a list of outgoing arcs.

-- The lists are doubly linked to support forward and backward
-- passes for sorting. Arc lists do not need to be doubly linked
-- because order of arcs is irrelevant.

-- The nodes and arcs are doubly linked to each other to support
-- efficient lookup of all arcs to/from a node, as well as efficient
-- lookup of the source/target node of an arc.

type Arc;
type Arc_Pointer is access Arc;

type Node;
type Node_Pointer is access Node;

type Node is
record

Id : Node_Pointer;-- Unique node ID supplied by the user.
ArcIn : ArcPointer:
ArcOut : ArcPointer;
Next : NodePointer;
Previous : Node_Pointer;

end record;

type Arc is
record

ID : ArcID; -- Unique arc ID supplied by the user.
Source : NodePointer;
Target : NodePointer;
Next ArcPointer;

end record;

32 Ada QUALITY AND STYLE

type Rank;
type Rank_Pointer is access Rank;

type Rank is
record

Number LevelID; -- computed ordinal number of the rank.
First Node NodePointer;
Last Node NodePointer;
Next Rank Pointer;
Previous RankPointer;

end record;

First Rank Rank_Pointer;
LastRank RankPointer;

rationale

It is very useful to add comments explaining the purpose, structure, and semantics of the data structures.
Many maintainers look at the data structures first when trying to understand the implementation of a
unit. Understanding the data which can be stored, along with the relationships between the different
data items, and the flow of data through the unit is an important first step in understanding the details of
the unit.

In the first example above, the names current_Column and currentRow are relatively self-explanatory.
The name Desiredcolumn is also well chosen, but it leaves the reader wondering what the relationship is
between the current column and the desired column. The comment explains the reason for having both.

Another advantage of commenting on the data declarations is that the single set of comments on a
declaration can replace multiple sets of comments that might otherwise be needed at various places in
the code where the data is manipulated. In the first example above, the comment briefly expands on the
meaning of "current" and "marked." It states that the "current" position is the location of the cursor,
the "current" position is in the current buffer, and the "marked" position was marked by the user. This
comment, along with the mnemonic names of the variables, greatly reduces the need for comments at
individual statements throughout the code.

It is important to document the full meaning of exceptions and under what conditions they can be
raised, as shown in the second example above, especially when the exceptions are declared in a package
specification. The reader has no other way to find out the exact meaning of the exception (without
reading the code in the package body).

Grouping all the exceptions together, as shown in the second example, can provide the reader with the
effect of a "glossary" of special conditions. This is useful when many different subprograms in the
package can raise the same exceptions. For a package in which each exception can be raised by only one
subprogram, it may be better to group related subprograms and exceptions together.

When commenting exceptions, it is better to describe the exception's meaning in general terms than to
list all the subprograms that can cause the exception to be raised; such a list is harder to maintain. When
a new routine is added, it is likely that these lists will not be updated. Also, this information is already
present in the comments describing the subprograms, where all exceptions that can be raised by the
subprogram should be listed. Lists of exceptions by subprogram are more useful and easier to maintain
than lists of subprograms by exception.

In the third example, the names of the record fields are short and mnemonic, but they are not
completely self-explanatory. This is often the case with complex data structures involving access types.
There is no way to choose the record and field names so that they completely explain the overall
organization of the records and pointers into a nested s%ý* of sorted lists. The comments shown are useful
in this case. Without them, the reader would no, know which lists are sorted, which lists are doubly
linked, or why. The comments express the intent of the author with respect to this complex data
structure. The maintainer still has to read the code if he wants to be sure that the double links are all
properly maintained. Keeping this in mind when reading the code makes it much easier for him to find a
bug where one pointer is updated and the opposite one is not.

3.3.6 Statement Comments

guideline

* Minimize comments embedded among statements.

READABILITY 33

"* Use comments only to explain parts of the code that are not obvious.

"• Comment intentional omissions from the code.

"• Do not use comments to paraphrase the code.

• Do not use comments to explain remote pieces of code, such as subprograms called by the current
unit.

* Where comments are necessary, make them visually distinct from the code.

example

The following is an example of very poorly commented code:

-- Loop through all the strings in the array Strings, converting
-- them to integers by calling Convert_To_Integer on each one,
-- accumulating the sum of all the values in Sum, and counting them
-- in Count. Then divide Sum by Count to get the average and store
-- it in Average. Also, record the maximum number in the global
-- variable Max Number.
for I in Strings'Range loop

-- Convert each string to an integer value by looping through
-- the characters which are digits, until a nondigit is found,
-- taking the ordinal value of each, subtracting the ordinal value
-- of '0', and multiplying by 10 if another digit follows. Store
-- the result in Number.
Number := Convert ToInteger(Strings(I));
-- Accumulate the sum of the numbers in Total.
Sum := Sum + Number;
-- Count the numbers.
Count := Count + 1;
-- Decide whether this number is more than the current maximum.
if Number > Max Number then

-- Update the global variable MaxNumber.
Max Number := Number;

end if;

end loop;
-- Compute the average.
Average := Sum / Count;

The following is improved by not repeating things in the comments which are obvious from the code, not
describing the details of what goes in inside of Convert_ To Integer, deleting an erroneous comment (the
one on the statement which accumulates the sum), and making the few remaining comments more
visually distinct from the code.

SumIntegers ConvertedFrom_Strings:
for I in Strings'Range loop

Number :- ConvertToInteger(Strings(I));
Sum := Sum + Number;
Count := Count + I;

-- The global Max- Number is computed here for efficiency.
if Number > MaxNumber then

Max Number := Number;
end if;

end loop SumIntegersConvertedFromStrings;

Average := Sum / Count;

rationale

The improvements shown in the example are not improvements merely by reducing the total number of
comments; they are improvements by reducing the number of useless comments.

Comments that paraphrase or explain obvious aspects of the code have no value. They are a waste of
effort for the author to write and the maintainer to update. Therefore, they often end up becoming
incorrect. Such comments also clutter the code, hiding the few important comments.

Comments describing what goes on inside of another unit violate the principle of information hiding.
The details about convertToInteger (deleted above) are irrelevant to the calling unit, and they are

34 Ada QUALITY AND STYLE

better left hidden in case the algorithm ever changes. Examples explaining what goes on elsewhere in the
code are very difficult to maintain and almost always become incorrect at the first code modification.

The advantage of making comments visually distinct from the code is that it makes the code easier to
scan, and the few important comments stand out better. Highlighting unusual or special code features
indicates that they _are intentional This assists maintainers by focusing attention on code sections that
are likely to cause problems during maintenance or when porting the program to another
implementation.

Comments should be used to document code that is nonportable, implementation-dependent,
environment-dependent, or tricky in any way. They notify the reader that something unusual was put
there for a reason. A beneficial comment would be one explaining a work-around for a compiler bug. If
you use a lower level (not "ideal" in the software engineering sense) solution, comment on it.
Information included in the comments should state why you used that particular construct. Also include
documentation on the failed attempts, e.g., using a higher level structure. This type of comment is useful
to maintainers for historical purposes. You show the reader that a significant amount of thought went
into the choice of a construct.

Finally, comments should be used to explain what is not present in the code as well as what is present. If
you make a conscious decision to not perform some action, like deallocating a data structure with which
you appear to be finished, be sure to add a comment explaining why not. Otherwise, a maintainer may
notice the apparent omission and "correct" it later, thus introducing an error.

note

Further improvements can be made on the above example by declaring the variables count and sum in a
local block so that their scope is limited and their initializations occur near their usage, e.g., by naming
the block Compute Average or by moving the code into a function called Averageof. The computation of
Max-Number can also be separated from the computation of Average. However, those changes are the
subject of other guidelines; this example is only intends to illustrate the proper use of comments.

3.3.7 Marker Comments

guideline

"* Use pagination markers to mark program unit boundaries (Guideline 2.1.7).

"* Repeat the unit name in a comment to mark the begin of a package body, subprogram body, task
body, or block if the begin is preceded by declarations.

"* For long or heavily nested if and case statements, mark the end of the statement with a comment
summarizing the condition governing the statement.

"* For long or heavily nested if statements, mark the else part with a comment summarizing the
conditions governing this portion of the statement.

example
if AFound then

elsif BFound then

else -- A and B were both not found

if Count = Max then

end if;

end if; -- AFound

package body Abstract_Strings is

READABILITY 35

procedure Catenate (...) is
begin

end Catenate;

begin -- Abstract Strings

end Abstract_Strings;

rationale

Marker comments emphasize the structure of code and make it easier to scan. They can be lines that
separate sections of code or descriptive tags for a construct. They help the reader resolve questions
about the current position in the code. This is more important for large units than for small ones. A short
marker comment fits on the same line as the reserved word with which it is associated. Thus, it adds
information without clutter.

The if, els if, else, and end if of an if statement are often separated by long sequences of statements,
sometimes involving other if statements. As shown in the first example, marker comments emphasize
the association of the keywords of the same statement over a great visual distance. Marker comments
are not necessary with the block statement and loop statement because the syntax of these statements
allows them to be named with the name repeated at the end. Using these names is better than using
marker comments because the compiler verifies that the names at the beginning and end match.

The sequence of statements of a package body is often very far from the first line of the package. Many
subprogram bodies, each containing many begin lines, may occur first. As shown in the second example,
the marker comment emphasizes the association of the begin with the package.

note

Repeating names and noting conditional expressions clutters the code if overdone. It is visual distance,
especially page breaks, that makes marker comments beneficial.

3.4 USING TYPES

Strong typing promotes reliability in software. The type definition of an object defines all legal values and
operations and allows the compiler to check for and identify potent'id errors during compilation. In
addition, the rules of type allow the compiler to generate code to check for violations of type constraints at
execution time. Using these Ada compiler's features facilitates earlier and more complete error detection
than that which is available with less strongly typed languages.

3.4.1 Declaring Types

guideline

"* Limit the range of scalar types as much as possible.

"* Seek information about possible values from the application.

"• Do not overload any of the type names in package standard.

"* Use subtype declarations to improve program readability (Booch 1987).

"* Use derived types and subtypes in concert (see Guideline 5.3.1).

example
subtype Card_Image is String (1 .. 80);

Input-Line : Card_Image := (others =>

-- restricted integer type:
type Day OfLeapYear is range 1 ,. 366;
subtype DayOfNonLeapYear is DayOfLeapYear range 1 .. 365;

36 Ada QUALITY AND STYLE

By the following declaration, the programmer means, "I haven't the foggiest idea how many," but the
actual range will show up buried in the code or as a system parameter:

Employee_Count : Integer;

rationale

Eliminating meaningless values from the legal ;ange improves the compiler's ability to detect errors
when an object is set to an invalid value. This also improves program readability. In addition, it forces
you to carefully think about each use of objects declared to be of the subtype.

Different implementations provide different sets of values for most of the predefined types. A reader
cannot determine the intended range from the predefined names. This situation is aggravated when the
predefined names are overloaded.

The names of an object and its subtype can clarify their intended use and document low-level design
decisions. The example above documents a design decision to restrict the software to devices whose
physical parameters are derived from the characteristics of punch cards. This information is easy to find
for any later changes, thus enhancing program maintainability.

Section 8.5 of the Ada Language Reference Manual says that declaring a subtype without a constraint is
one method for renaming a type.

Types can have highly constrained sets of values without eliminating useful values. Usage as described in
Guideline 5.3.1 eliminates many flag variables and type conversions within executable statements. This
renders the program more readable while allowing the compiler to enforce strong typing constraints.

note

Subtype declarations do not define new types, only constraints for existing types.

Recognize that any deviation from this guideline detracts from the advantages of the strong typing
facilities of the Ada language.

3.4.2 Enumeration Types

guideline

* Use enumeration types instead of numeric codes.

* Use representation clauses to match requirements of external devices.

example

Use
type Color is (Blue, Red, Green, Yellow);

rather than
Blue : constant := 1;
Red : constant := 2;
Green constant 3;
Yellow constant 4;

and add the following if necessary.
for color use (Blue => 1,

Red => 2,
Green => 3,
Yellow => 4);

rationale

Enumerations are more robust than numeric codes; they leave less potential for errors resulting from
incorrect interpretation and from additions to and deletions from the set of values during maintenance.
Numeric codes are holdovers from languages that have no user-defined types.

In addition, Ada provides a number of attributes (-Fos, "val, "succ, 'Pred, 'Image, and 'value) for
enumeration types which, when used, are more reliable than user-written operations on encodings.

A numeric code may at first seem appropriate to match external values. Instead, these situations call for
a representation clause on the enumeration type. Th, representation clause documents the "encoding."

READABILITY 37

If the program is properly structured to isolate and encapsulate hardware dependencies (see Guideline
7.1.5), the numeric code ends up in an interface package where it can be easily found and replaced
should the requirements change.

3.5 SUMMARY
spelling

* Use underscores to separate words in a compound name.

* Represent numbers in a consistent fashion.

* Represent literals in a radix appropriate to the problem.

• Use underscores to separate digits the same way commas or periods (or spaces for nondecimal
bases) would be used in handwritten text.

* When using scientific notation, make the E consistently either upper or lower case.

* In an alternate base, represent the alphabetic characters in either all upper case or all lower case.

* Make reserved words and other elements of the program visually distinct from each other.

* Do not use an abbreviation of a long word as an identifier where a shorter synonym exists.

* Use a consistent abbreviation strategy.

* Do not use ambiguous abbreviations.

* An abbreviation must save many characters over the full word to be justified.

* Use abbreviations that are well-accepted in the application domain.

* Maintain a list of accepted abbreviations and use only abbreviations on that list.

naming conventions
"* Choose names that are as self-documentinc as possible.
"* Use a short synonym instead of an abbreviation (see Guideline 3.1.4).

"* Use names given by the application but not obscure jargon.

"* Use singular, general nouns as (sub)type identifiers.

"* Choose identifiers that describe one of the (sub)type's values.

* Do not use identifier constructions (e.g., suffixes) that are unique to (sub)type identifiers.

"* Do not use the type names from predefined packages.

"* Use predicate clauses or adjectives for boolean objects.

"* Use singular, specific nouns as object identifiers.

"* Choose identifiers that describe the object's value during execution.

"* Use singular, general nouns as identifiers for record components.

* Use action verbs for procedures and entries.

* Use predicate-clauses for boolean functions.

* Use nouns for nonboolean functions.

* Give packages names that imply higher levels of organization than subprograms. Generally, these
are noun phrases that describe the abstraction provided.

• Give tasks names that imply an active entity.

* Name generic subprograms as if they were nongeneric subprograms.

* Name generic packages as if they were nongeneric packages.

* Make the generic names more general than the instantiated names.

* Use symbolic values instead of literals wherever possible.

38 Ada QUALITY AND STYLE

"* Use constants instead of variables for constant values.

"• Use named numbers instead of constants when possible.

"• Use named numbers to replace numeric literals whose type or context is truly universal.

"* Use constants for objects whose values cannot change after elaboration (United Technologies
1987).

"* Show relationships between symbolic values by defining them with static expressions.

"* Use linearly independent sets of literals.

", Use attributes like 'First and 'Last instead of literals wherever possible.

comments
"* Make the code as clear as possible to reduce the need for comments.
"• Never repeat information in a comment which is readily available in the code.

"* Where a comment is required, make it concise and complete.

"* Use proper grammar and spelling in comments.

* Make comments visually distinct from the code.

* Structure comments in headers so that information can be automatically extracted by a tool.

"* Put a file header on each source file.

"* Place ownership, responsibility, and history information for the file in the file header.

"* Put a header on the specification of each program unit.

"* Place information required by the user of the program unit in the specification header.

"* Do not repeat information (except unit name) in the specification header which is present in the
specification.

"* Explain what the unit does, not how or why it does it.

"* Describe the complete interface to the program unit, including any exceptions it can raise and any
global effects it can have.

"* Do not include information about how the unit fits into the enclosing software system.
"* Describe the performance (time and space) characteristics of the unit.

• Place information required by the maintainer of the program unit in the body header.
"* Explain how and why the unit performs its function, not what the unit does.
"* Do not repeat information (except unit name) in the header that is readily apparent from reading

the code.
"* Do not repeat information (except unit name) in the body header that is available in the

specification header.
"* Comment on all data types, objects, and exceptions unless their names are self-explanatory.
"* Include information on the semantic structure of complex pointer-based data structures.

"* Include information about relationships that are maintained between data objects.
"* Do not include comments that merely repeat the information in the name.

"* Minimize comments embedded among statements.
"* Use comments only to explain parts of the code that are not obvious.
"* Comment intentional omissions from the code.
"* Do not use comments to paraphrase the code.

"* Do not use comments to explain remote pieces of code, such as subprograms called by the current
unit.

"* Where comments are necessary, make them visually distinct from the code.

READABILITY 39

"* Use pagination markers to mark program unit boundaries (Guideline 2.1.7).

"* Repeat the unit name in a comment to mark the begin of a package body, subprogram body, task
body, or block if the begin is preceded by declarations.

"• For long or heavily nested if and case statements, mark the end of the statement with a comment
summarizing the condition governing the statement.

"• For long or heavily nested if statements, mark the else part with a comment summarizing the
conditions governing this portion of the statement.

using types

"* Limit the range of scalar types as much as possible.

"• Seek information about possible values from the application.

"• Do not overload any of the type names in package Standard.

"* Use subtype declarations to improve program readability (Booch 1987).

"* Use derived types and subtypes in concert (see Guideline 5.3.1).

"* Use enumeration types instead of numeric codes.

"* Use representation clauses to match requirements of external devices.

40 Ada QUALITY AND STYLE

CHAPTER 4
Program Structure

Proper structure improves program clarity. This is analogous to readability on lower levels and facilitates the
use of the readability guidelines (Chapter 3). The various program structuring facilities provided by Ada
were designed to enhance overall clarity of design. These guidelines show how to use these facilities for their
intended purposes.

Abstraction and encapsulation are supported by the package concept and by private types. Related data and
subprograms can be grouped together and seen by a higher level as a single entity. Information hiding is
enforced via strong typing and by the separation of package and subprogram specifications from their
bodies. Additional Ada language elements that impact program structure are exceptions and t.;ks.

4.1 HIGH-LEVEL STRUCTURE

Well-structured programs are easily understood, enhanced, and maintained. Poorly structured programs are
frequently restructured during maintenance just to make the job easier. Many of the guidelines listed below
are often given as general program design guidelines.

4.1.1 Separate Compilation Capabilities

guideline

"* Place the specification of each library unit package in a separate file from its body.

"* Create an explicit specification, in a separate file, for each library unit subprogram.

"* Use subunits for the bodies of large units which are nested in other units.

"* Place each subunit in a separate file.

"* Use a consistent file naming convention.

example

The file names below illustrate one possible file organization and associated consistent naming
convention. The library unit name is used for the body. A trailing underscore indicates the specification,
and any files containing subunits use names constructed by separating the body name from the subunit
name with two underscores.

textio_.ada -- the specification
textio.ada -- the body
text_iointegerio.ada -- a subunit
text iofixed_io.ada -- a subunit
textiofloatjio.ada -- a subunit
textjioenumeration io.ada -- a subunit

41

42 Ada QUALITY AND STYLE

rationale

The main reason for the emphasis on separate files in this guideline is to minimize the amount of
recompilation required after each change. Typically, during software development, bodies of units are
updated far more often than specifications. If the body and specification reside in the same file, then the
specification will be compiled each time the body is compiled, even though the specification has not
changed. Because the specification defines the interface between the unit and all of its users, this
recompilation of the specification typically makes recompilation of all users necessary, in order to verify
compliance with the specification. If the specifications and bodies of the users also reside together, then
any users of these units will also have to be recompiled, and so on. The ripple effect can force a huge
number of compilations which could have been avoided, severely slowing the development and test
phase of a project. This is why we suggest placing specifications of all library units (nonnested units) in
separate files from their bodies.

For the same reason, use subunits for large nested bodies, and put each subunit in its own file. This
makes it possible to modify the body of the one nested unit without having to recompile any of the other
units in the body. This is recommended for large units because changes are more likely to occur in large
units than in small ones.

An additional benefit of using multiple separate files is that it allows different implementers to modify
different parts of the system at the same time with conventional editors which do not allow multiple
concurrent updates to a single file.

Finally, keeping bodies and specifications separate makes it possible to have multiple bodies for the
same specification, or multiple specifications for the same body. Although Ada requires that there be
exactly one specification per body in a system at any given time, it can still be useful to maintain multiple
bodies or multiple specifications for use in different builds of a system. For example, a single
specification may have multiple bodies, each of which implements the same functionality with a different
tradeoff of time versus space efficiency. Or, for machine-dependent code, there may be one body for
each target machine. Maintaining multiple package specifications can also be useful during development
and test. You may develop one specification for delivery to your customer and another for unit testing.
The first one would export only those subprograms intended to be called from outside of the package
during normal operation of the system. The second one would export all subprograms of the package so
that each of them could be independently tested.

A consistent file naming convention is recommended to make it easier to manage the large number of
files which may result from following this guideline.

4.1.2 Subprograms

guideline

"* Use subprograms to enhance abstraction.

"* Restrict each subprogram to the performance of a single action.

example

Your program is required to output text to many types of devices. Because the devices would accept a
variety of character sets, the proper way to do this is to write a subprogram to convert to the required
character set. This way, the output subprogram has one purpose and the conversions are described
elsewhere.

procedure DispatchToDevice
(Output : in Text;
Device in Device_Name;
Status out Error_codes) is

Upper_CaseOutput : Text (I .. Output'Length);

begin -- Dispatch ToDevice

case Device.characterSet is

PROGRAM STRUCTURE 43

when LimitedASCII =>
ConvertTo UpperCase (Original => Output,

UpperCase => Upper_Case_Output);

when Extended ASCII =>

when EBCDIC =>

end case; -- DeviceTypeCharacterSet

end Dispatch_ToDevice;

rationale

Subprograms are an extremely effective and well-understood abstraction technique. Subprograms
increase program readability by hiding the details of a particular activity. It is not necessary that a
subprogram be called more than once to justify its existence.

note
Dealing with the overhead of subroutine calls is discussed in Guideline 9.1.1.

4.1.3 Functions
guideline

"* Use a function when the subprogram's primary purpose is to provide a single value.

"* Minimize the side effect of a function.

example
Although reading a character from a file will change what character is read next, this is accepted as a
minor side effect compared to the primary purpose of the following function:

function NextCharacter return Character is separate;

However, the use of a function like this should could lead to a subtle problem. Any time the order of
evaluation is undefined, the order of the values returned by the function will effectively be undefined.
In this example, the order of the characters placed in word and the order that the following two
characters are given to the suffix parameters is unknown. No implementation of the NextCharacter
function can guarantee which character will go where:

Word : constant String := String'(1 .. 5 => Next-Character);

begin -- Start Parsing

Parse(Keyword => Word,
Suffixl => Next Character,
Suffix2 => Next-Character);

end StartParsing;

Of course, if the order is unimportant (as in a random number generator), then the order of evaluation

is unimportant.

rationale

A side effect is a change to any variable that is not local to the subprogram. This includes changes to
variables by other subprograms and entries during calls from the function if the changes persist after the
function returns. Side effects are discouraged because they are difficult to understand and maintain.
Additionally, the Ada language does not define the order in which functions are evaluated when they
occur in expressions or as actual parameters to subprograms. Therefore, a program which depends on
the order in which side effects of functions occur is erroneous. Avoid using side effects anywhere.

44 Ada QUALITY AND STYLE

4.1.4 Packages
guideline

* Use packages for information hiding

* Use packages with private types for abstract data types.

* Use packages to model abstract entities appropriate to the problem domain.

* Use packages to group together related type and object declarations (e.g., common declarations for
two or more library units).

Use packages to group together related program units for configuration control or visibility reasons
(NASA 1987).

Encapsulate machine dependencies in packages. Place a software interface to a particular device in
a package to facilitate a change to a different device.

• Place low-level implementation decisions or interfaces in subprograms within packages.

* Use packages and subprograms to encapsulate and hide program details that ,Lzvy rchnge (Nissen
and Wallis 1984).

example

A package called BackingStorage_Interface could contain type and subprogram declarations to
support a generalized view of an external memory system (such as a disk or drum). Its internals may, in
turn, depend on other packages more specific to the hardware or operating system.

rationale

Packages are the principal structuring facility in Ada. They are intended to be used as direct support for
abstraction, information hiding, and modularization. For example, they are useful for encapsulating
machine dependencies as an aid to portability. A single specification can have multiple bodies isolating
implementation-specific information so other parts of the code do not need to change.

Encapsulating areas of potential change helps to minimize the effort required to implement that change
by preventing unnecessary dependencies among unrelated parts of the system.

note

The most prevalent objection to this guideline usually involves performance penalties. See Guideline
9.1.1 for a discussion about subprogram overhead.

4.1.5 Cohesion
guideline

"* Make each package serve a single purpose.

"* Use packages to group related data, types, and subprograms.

"* Avoid collections of unrelated objects and subprograms (NASA 1987 and Nissen and Wallis 1984).

example

As a bad example, a package named ProjectDefinitions is obviously a "catch all" for a particular
project and is likely to be a jumbled mess. It probably has this form to permit project members to
incorporate a single with clause into their software.

Better examples are packages called Display_FormatDefinitions, containing all the types and constants
needed by some specific display in a specific format, and cartridge TapeHandler, containing all the
types, constants, and subprograms which provide an interface to a special purpose device.

rationale

See also Guideline 5.4.1 on Heterogeneous Data.

The degree to which the entities in a package are related has a direct impact on the ease of
understanding packages and programs made up of packages. There are different criteria for grouping,
and some criteria are less effective than others. Grouping the class of data or activity (e.g., initialization

PROGRAM STRUCTURE 45

modules) or grouping data or activities based on their timing characteristics is less effective than
grouping based on function or need to communicate through data (Charette 1986 paraphrased).

note

Traditional subroutine libraries often group functionally unrelated subroutines. Even such libraries
should be broken into a collection of packages each containing a logically cohesive set of subprograms.

4.1.6 Data Coupling

guideline

• Avoid declaring variables in package specifications.

example

This is part of a compiler. Both the package handling error messages and the package containing the
code generator need to know the current line number. Rather than storing this in a shared variable of
type Natural, the information is stored in a package that hides the details of how such information is
represented, and makes it available with access routines.

package CompilationStatu6 is
type Line Range is range 1 .. 2_500_000;
function SourceLineNumber return LineRange;

end Compilation_Status;

with CompilationStatus;
package Error_MessageProcessing is

-- Handle compile-time diagnostic.
end ErrorMessageProcessing;

with compilation Status;

package codeGeneration is
-- Operations for code generation.

end codeGeneration;

rationale

Strongly coupled program units can be difficult to debug and very difficult to maintain. By protecting
shared data with access functions, the coupling is lessened. This prevents dependence on the data
structure and access to the data can be controlled.

note

The most prevalent objection to this guideline usually involves performance penalties. When a variable
is moved to the package body, subprograms to access the variable must be provided and the overhead
involved during each call to those subprograms is introduced. See Guideline 9.1.1 for a discussion
about subprogram overhead.

4.1.7 Tasks

guideline

"* Use tasks to model abstract, asynchronous entities within the problem domain.

"* Use tasks to control or synchronize access to tasks or other asynchronous entities (e.g.,
asynchronous I/O, peripheral devices, interrupts).

"* Use tasks to define concurrent algorithms for multiprocessor architectures.

"* Use tasks to perform concurrent, cyclic, or prioritized activities (NASA 1987).

46 Ada QUALITY AND STYLE

rationale

The rationale for this guideline is given under Guideline 6.1.1. Chapter 6 discusses tasking in more
detail.

4.2 VISIBILITY
Ada's ability to enforce information hiding and separation of concerns through its visibility controlling
features is one of the most important advantages of the language, particularly when "pieces of a large system
are being developed separately." Subverting these features, for example by excessive reliance on the use
clause, is wasteful and dangerous. See also Guideline 5.7.

4.2.1 Minimization of Interfaces

guideline

"* Put only what is needed for the use of a package into its specification.

"* Minimize the number of declarations in package specifications.

"* Do not include extra operations simply because they are easy to build.

* Minimize the context (with) clauses in a package specification.

"* Reconsider subprograms which seem to require large numbers of parameters.

"* Do not manipulate global data within a subprogram or package merely to limit the number of
parameters.

"* Avoid unnecessary visibility; hide the implementation details of a program unit from its users.

example

package TelephoneBook is

type Listing is limited private;

procedure Set_Name (NewName in String;
Current in out Listing);

procedure Insert (Additional in Listing);
procedure Delete (Obsolete in Listing);

private

type Information;
type Listing is access Information;

end Telephone Book;

package body Telephone-Book is

-- Full details of record for a listing
type Information is

record

Next : Listing;

end record;

First : Listing;

procedure Set_Name (NewName in String;
Current in out Listing) is separate;

procedure Insert (Additional in Listing) is separate;
procedure Delete (Obsolete in Listing) is separate;

end TelephoneBook;

PROGRAM STRUCTURE 47

rationale

For each entity in the specification, give careful consideration to whether it could be moved to the body.
The fewer the extraneous details, the more understandable the program, package, or subprogram. It is
important to maintainers to know exactly what a package interface is so that they can understand the
effects of changes. Interfaces to a subprogram extend beyond the parameters. Any modification of
global data from within a package or subprogram is an undocumented interface to the "outside" as well.

Pushing as many as possible of the context dependencies into the body makes the reader's job easier,
localizes the recompilation required when library units change, and helps prevent a ripple effect during
modifications. See also Guideline 4.2.3.

Subprograms with large numbers of parameters often indicate poor design decisions (e.g., the functional
boundaries of the subprogram are inappropriate, or parameters are structured poorly). Conversely,
subprograms with no parameters are likely to be accessing global data.

Objects visible within package specifications can be modified by any unit that has visibility to them. The
object cannot be protected or represented abstractly by its enclosing package. Objects which must
persist should be declared in package bodies. Objects whose value depends on program units external to
their enclosing package are probably either in the wrong package or are better accessed by a subprogram
specified in the package specification.

note

The specifications of some packages, such as Ada bindings to existing subroutine libraries, cannot easily
be reduced in size. In such cases, it may be beneficial to break these up into smaller packages, grouping
according to category (e.g., trigonometric functions).

4.2.2 Nested Packages

guideline

* Nest package specifications within another package specification only for grouping operations,
hiding common implementation details, or presenting different views of the same abstraction.

example

Chapter 14 of the Ada Language Reference Manual gives an example of desirable package specification
nesting. The specifications of generic packages IntegerIO, Float IO, Fixed IO, and Enumeration_IO

are nested within the specification of package Text Io. Each of them is a generic, grouping closely
related operations and needing to use hidden details of the implementation of Text IO.

rationale

Grouping package specifications into an encompassing package emphasizes a relationship of
commonality among those packages. It also allows them to share common implementation details
resulting from the relationship.

An abstraction occasionall) needs to present different views to different classes of users. Building one
view upon another as an additional abstraction does not always suffice, because the functionality of the
operations presented by the views may be only partially disjoint. Nesting specifications groups the
facilities of the various views, yet associates them with the abstraction they present. Abusive mixing of
the views by another unit would be easy to detect due to the multiple use clauses or an incongruous mix
of qualified names.

4.2.3 Restricting Visibility

guideline
"* Restrict the visibility of program units as much as possible by nesting them inside other program units

and hiding them inside package bodies (Nissen and Wallis 1984).

"* Minimize the scope within which with clauses apply.

"* Only with those units directly needed.

48 Ada QUALITY AND STYLE

example

This program is a compiler. Access to the printing facilities of TextIO is ,estricted to the software
involved in producing the source code listing.

procedure Compiler is

package ListingFacilities is

procedure NewPage OfListing;
procedure NewLineOfPrint;

end ListingFacilities;

package body Listing Facilities is separate;

begin -- Compiler

end Compiler;

with Text IO;

separate (Compiler)
package body Listing Facilities is

procedure NewPageOfListing is
begin

end NewPage of_Listing;

procedure NewLineOfPrint is
begin

end NewLineOfPrint;

end ListingFacilities;

rationale

Restricting visibility of a program unit ensures that the program unit is not called from some other part of
the system than that which was intended. This is done by nesting it inside of the only unit which uses it,
or by hiding it inside of a package body rather than declaring it in the package specification. This avoids
errors and eases the job of maintainers by guaranteeing that a local change in that unit will not have an
unforeseen global effect.

Restricting visibility of a library unit, by using with clauses on subunits rather than on the entire parent
unit, is useful in the same way. In the example above, it is clear that the package TextIo is used only by
the ListingJacilities package of the compiler.

note

One way to minimize the coverage of a with clause is to use it only with subunits that really need it.
Consider making those subunits separate compilation units when the need for visibility to a library unit is
restricted to a subprogram or two.

4.2.4 Hiding Tasks
guideline

Carefully consider encapsulation of tasks.

PROGRAM STRUCTURE 49

example

package DiskHead_Scheduler is

type Words is ...

type Track-Number is ...

procedure Transmit (Track in TrackNumber;
Data in Words);

end DiskHeadScheduler;

package body Disk HeadScheduler is

task Control is
entry SignIn (Track : in Track-Number);

end Control;

task Track Manager is
entry Transfer(Track Number) (Data : in Words);

end Track-Manager;

procedure Transmit (Track in TrackNumber;
Data in Words) is

begin

Control. SignIn (Track);
TrackManager.Transfer (Track) (Data);

end Transmit;

end Disk Head Scheduler;

rationale

The decision whether to declare a task in the specification or body of an enclosing package is not a
simple one. There are good arguments for both.

Hiding a task specification in a package body and exporting (via subprograms) only required entries
reduces the amount of extraneous information in the package specification. It allows your subprograms
to enforce any order of entry calls necessary to the proper operation of the tasks. It also allows you to
impose defensive task communication practices (see Guideline 6.2.2) and proper use of conditional and
timed entry calls. Finally, it allows the grouping of entries into sets for export to different classes of users
(e.g., producers versus consumers), or the concealment of entries that should not be made public at all
(e.g., initialization, completion, signals). Where performance is an issue and there are no ordering rules
to enforce, the entries can be renamed as subprograms to avoid the overhead of an extra procedure call.

An argument which can be viewed as an advantage or disadvantage is that hiding the task specification in
a package body hides the fact of a tasking implementation from the user. If the application is such that a
change to or from a tasking implementation, or a reorganization of services among tasks, need not
concern users of the package then this is an advantage. However, if the package user must know about
the tasking implementation to reason about global tasking behavior, then it is better not to hide the task
completely. Either move it to the package specification or add comments stating that there is a tasking
implementation, describing when a call may block, etc. Otherwise, it is the package implementor's
responsibility to ensure that users of the package do not have to concern themselves with behaviors such
as deadlock, starvation, and race conditions.

50 Ada QUALITY AND STYLE

Finally, keep in mind that hiding tasks behind a procedural interface prevents the usage of conditional
and timed entry calls and entry families, unless you add parameters and extra code to the procedures to
make it possible for callers to direct the procedures to use these capabilities.

4.3 EXCEPTIONS

This section addresses the issue of exceptions in the context of program structures. It discusses how
exceptions should be used as part of the interface to a unit, including what exceptions to declare and raise
and under what conditions to raise them. Information on how to handle, propagate, and avoid raising
exceptions is found in Guideline 5.8. Guidelines on how to deal with portability issues are in Guideline 7.5.

4.3.1 Using Exceptions to Help Define an Abstraction

guideline

"* Declare a different exception name for each error that the user of a unit can make.

"* Declare a different exception name for each unavoidable and unrecoverable internal error which
can occur in a unit.

"• Do not borrow an exception name from another context.

"* Export (declare visibly to the user) the names of all exceptions which can be raised.

"* In a package, document which exceptions can be raised by each subprogram and task entry.

"* Do not raise exceptions for internal errors which can be avoided or corrected within the unit.

"* Do not raise the same exception to report different types of errors which are distinguishable by the
user of the unit.

"* Provide interrogative functions which allow the user of a unit to avoid causing exceptions to be
raised.

"• When possible, avoid changing state information in a unit before raising an exception.

"* Catch and convert or handle all predefined and compiler-defined exceptions at the earliest
opportunity.

"* Do not explicitly raise predefined or implementation-defined exceptions.

"* Never let an exception propagate beyond its scope.

example

This package specification defines an exception which enhances the abstraction:

generic
type Element is private;

package Stack is

function Stack Empty return Boolean;

-- Raised when POP is used on empty stack.
No DataOnStack : exception;

procedure Pop (From-Top : out Element);
procedure Push (Onto-Top in Element);

end Stack;

This example shows how to convert a predefined exception to a user-defined one:

procedure Pop (FromTop : out Element) is

if Stack Empty then
raise No_DataOnStack;

PROGRAM STRUCTURE 51

else -- Stack contains at least one element
Top_1ndex Top_Index - 1;
From-Top Stack(TopIndex + 1);

end if;
end Pop;

rationale
Exceptions should be used as part of an abstraction to indicate error conditions which the abstraction is
unable to prevent or correct. Since the abstraction is unable to correct such an error, it must report the
error to the user. In the case of a usage error (e.g., attempting to invoke operations in the wrong
sequence or attempting to exceed a boundary condition), the user may be able to correct the error. In
the case of an error beyond the control of the user, the user may be able to work around the error if
there are multiple mechanisms available to perform the desired operation. In other cases, the user may
have to abandon use of the unit, dropping into a degraded mode of limited functionality. In any case,
the user must be notified.

Exceptions are a good mechanism for reporting such errors because they provide an alternate flow of
control for dealing with errors. This allows error-handling code to be kept separate from the code for
normal processing. When an exception is raised, the current operation is aborted and control is
transferred directly to the appropriate exception handler.

Several of the guidelines above exist to maximize the ability of the user to distinguish and correct
different types of errors. Providing a different exception name for each error condition makes it possible
to handle each error condition separately. Declaring new exception names, rather than raising
exceptions declared in other packages, reduces the coupling between packages and also makes different
exceptions more distinguishable. Exporting the names of all exceptions which a unit can raise, rather
than declaring them internally to the unit, makes it possible for users of the unit to refer to the names in
exception handlers. Otherwise, the user would be able to handle the exception only with an others

handler. Finally, using comments to document exactly which of the exceptions declared in a package
can be raised by each subprogram or task entry making it possible for the user to know which exception
handlers are appropriate in each sitvdtion.

Because they cause an immediate transfer of contrt'•l, exceptions are useful for reporting unrecoverable
errors which prevent an operation from being completed, but not for reporting status or modes
incidental to the completion of an optration. They should not be used to report internal errors which a
unit was able to correct invisibly to tha user.

To provide the user with maximum flexibility, it is a good idea to provide interrogative functions which
the user can call to determine whether an exception would be raised if a subprogram or task entry were
invoked. The function stack Empty in the above example is such a function. It indicates whether
No_Dataonstack would be raised if Pop were called. Providing such functions makes it possible for the
user to avoid triggering exceptions.

To support error recovery by its user, a unit should try to avoid changing state during an invocation
which raises an exception. If a requested operation cannot be completely and correctly performed, then
the unit should either detect this before changing any internal state information, or should revert back to
the state at the time of the request. For example, after raising the exception NoData OnStack, the stack
package in the above example should remain in exactly the same state it was in when Pop was called. If it
were to partially update its internal data structures for managing the stack, then future Push and Pop
operations would not perform correctly. This is always desirable, but not always possible.

User-defined exceptions should be used instead of predefined or compiler-defined exceptions because
they are more descriptive and more specific to the abstraction. The predefined exceptions are very
general, and can be triggered by many different situations. Compiler-defined exceptions are
nonportable and have meanings which are subject to change even between successive releases of the
same compiler. This introduces too much uncertainty for the creation of useful handlers.

If you are writing an abstraction, remember that the user does not know about the units you use in your
implementation. That is an effect of information hiding. If any exception is raised within your
abstraction, you must catch it and handle it. The user is not able to provide a reasonable handler if the

52 Ada QUALITY AND STYLE

original exception is allowed to propagate out. You can still convert the exception into a form intelligible
to the user if your abstraction cannot effectively recover on its own.

Converting an exception means raising a user-defined exception in the handler for the original
exception. This introduces a meaningful name for export to the user of the unit. Once the error situation
is couched in terms of the application, it can be handled in those terms.

Do not allow an exception to propagate unhandled outside the scope of the declaration of its name,
because then only a handler for others can catch it. As discussed under Guideline 5.8.2, a handler for
others cannot be written to deal with the specific error effectively.

4.4 SUMMARY

high-level structure

"* Place the specification of each library unit package in a separate file from its body.

"* Create an explicit specification, in a separate file, for each library unit subprogram.

"* Use subunits for the bodies of large units which are nested in other units.

"* Place each subunit in a separate file.

"* Use a consistent file naming convention.

"* Use subprograms to enhance abstraction.

"* Restrict each subprogram to the performance of a single action.

"• Use a function when the subprogram's primary purpose is to provide a single value.

"* Minimize the side effect of a function.

"• Use packages for information hiding.

"• Use packages with private types for abstract data types.

"* Use packages to model abstract entities appropriate to the problem domain.

* Use packages to group together related type and object declarations (e.g., common declarations for
two or more library units).

• Use packages to group together related program units for configuration control or visibility reasons.

* Encapsulate machine dependencies in packages. Place a software interface to a particular device in
a package to facilitate a change to a different device.

* Place low-level implementation decisions or interfaces in subprograms within packages.

* Use packages and subprograms to encapsulate and hide program details that may change.

* Make each package serve a single purpose.

* Use packages to group functionally related data, types, and subprograms.

* Avoid collections of unrelated objects and subprograms.

• Avoid putting variables in package specifications.

* Use tasks to model abstract, asynchronous entities within the problem domain.

* Use tasks to control or synchronize access to tasks or other asynchronous entities (e.g.,
asynchronous I/O, peripheral devices, interrupts).

* Use tasks to define concurrent algorithms for multiprocessor architectures.

* Use tasks to perform concurrent, cyclic, or prioritized activities.

visibility

"* Put only what is needed for the use of a package into its specification.

"* Minimize the number of declarations in package specifications.

• Do not include extra operations simply because they are easy to build.

PROGRAM STRUCTURE 53

* Minimize the context (with) clauses in a package specification.

"* Reconsider subprograms which seem to require large numbers of parameters.

"* Do not manipulate global data within a subprogram or package merely to limit the number of
parameters.

"* Avoid unnecessary visibility; hide the implementation details of a program unit from its users.

"* Nest package specifications within another package specification only for grouping operations,
hiding common implementation details, or presenting different views of the same abstraction.

"* Restrict the visibility of program units as much as possible by nesting them inside other program units
and hiding them inside package bodies.

"* Minimize the scope within which with clauses apply.

"* Only with those units directly needed.

"* Carefully consider encapsulation of tasks.

exceptions

"* Declare a different exception name for each error that the user of a unit can make.

"* Declare a different exception name for each unavoidable and unrecoverable internal error which
can occur in a unit.

"* Do not borrow an exception name from another context.

"* Export (declare visibly to the user) the names of all exceptions which can be raised.

"* In a package, document which exceptions can be raised by each subprogram and task entry.

"* Do not raise exceptions for internal errors which can be avoided or corrected within the unit.

"• Do not raise the same exception to report different types of errors which are distinguishable by the
user of the unit.

"* Provide interrogative functions which allow the user of a unit to avoid causing exceptions to be
raised.

"• When possible, avoid changing state information in a unit before raising an exception.

"* Catch and convert or handle all predefined and compiler-defined exceptions at the earliest
opportunity.

"* Do not explicitly raise predefined or implementation-defined exceptions.

"* Never let an cxce-,'37 .-,-•-!.ite beyond its sc-,-e

54 Ada QUALITY AND STYLE

CHAPTER 5
Programming Practices

Software is always subject to change. The need for this change, euphemistically known as "maintenance"
arises from a variety of sources. Errors need to be corrected as they are discovered. System functionality
may need to be enhanced in planned or unplanned ways. Inevitably, the requirements change over the
lifetime of the system, forcing continual system evolution. Often, these modifications are conducted long
after the software was originally written, usually by someone other than the original author.

Easy and successful modification requires that the software be readable, understandable, and structured
according to accepted practice. If a software component cannot be easily understood by a programmer who
is familiar with its intended function, that software component is not maintainable. Techniques that make
code readable and comprehensible enhance its maintainability. Previous chapters presented techniques
such as consistent use of naming conventions, clear and well-organized commentary, and proper
modularization. This chapter presents consistent and logical use nf language features.

Correctness is one aspect of reliability. While style guidelines cannot enforce the use of correct algorithms,
they can suggest the use of techniques and language features known to reduce the number or likelihood of
failures. Such techniques include program construction methods that reduce the likelihood of errors or that
improve program predictability by defining behavior in the presence of errors.

5.1 OPTIONAL PARTS OF THE SYNTAX
Parts of the Ada syntax, while optional, can enhance the readability of the code. The guidelines given below
concern use of some of these optional features.

5.1.1 Loop Names

guideline

* Associate names with loops when they are nested (Booch 1987, 1986).

example
ProcessEachPage:

loop

Process_Al l_The_LinesOnThis_Page:
loop

exit Process AllTheLinesOnThis_Page when
Line-Number = MaxLinesOn_Page;

Look For -SentinelValue:
loop

55

56 Ada QUALITY AND STYLE

exit Look For SentinelValue when
Current Symbol = Sentinel;

end loop LookForSentinel Value;

end loop ProcessAllTheLinesOnThis_Page;

exit ProcessEachPage when Page_Number = MaximumPages;

end loop Process_EachPage;

rationale

When you associate a name with a loop, you must include that name with the associated end for that
loop (Department of Defense 1983). This helps readers find the associated end for any given loop. This
is especially true if loops are broken over screen or page boundaries. The choice of a good name for the
loop documents its purpose, reducing the need for explanatory comments. If a name for a loop is very
difficult to choose, this could indicate a need for more thought about the algorithm.

Regularly naming loops helps you follow Guideline 5.1.3.

It can be difficult to think up a name for every loop, therefore the guideline specifies nested loops. The
benefits in readability and second thought outweigh the inconvenience of naming the loops.

5.1.2 Block Names

guideline

0 Associate names with blocks when they are nested.

example
Trip:

declare

begin -- Trip

Arrive At Airport:
declare

begin -- ArriveAt Airport

Rent_Car;
ClaimBaggage;
Reserve_Hotel;

end Arrive At Airport;

Visit Customer:
declare

begin -- Visit Customer
-- again a set of activities...

end Visit_Customer;

DeparturePreparation:
declare

begin -- DeparturePreparation
Return Car;
Check-Baggage;
Wait For Flight;

end DeparturePreparation;

Board...Return_Flight;
end Trip;

PROGRAMMING PRACTICES 57

rationale
When there is a nested block structure it can be difficult to determine which end corresponds to which
block. Naming blocks alleviates this confusion. The choice of a good name for the block documents its
purpose, reducing the need for explanatory comments. If a name for the block is very difficult to
choose, this could indicate a need for more thought about the algorithm.

This guideline is also useful if nested blocks are broken over a screen or page boundary.

It can be difficult to think up a name for each block, therefore the guideline specifies nested blocks. The
benefits in readability and second thought outweigh the inconvenience of naming the blocks.

5.1.3 Exit Statements
guideline

0 Use loop names on all exit statements from nested loops.

example

See the example in Guideline 5.1.1.

rationale

An exit statement is an implicit goto. It should specify its source explicitly. When there is a nested loop
structure and an exit statement is used, it can be difficult to determine which loop is being exited. Also,
future changes which may introduce a nested loop are likely to introduce an error, with the exit
accidentally exiting from the wrong loop. Naming loops and their exits alleviates this confusion. This
guideline is also useful if nested loops are broken over a screen or page boundary.

5.1.4 Naming End Statements
guideline

"* Include the simple name at the end of a package specification and body.

"• Include the simple name at the end of a task specification and body.

"• Include the simple name at the end of an accept statement.

• Include the designator at the end of a subprogram body.

example

package Autopilot is

function Is-Engaged return Boolean;

procedure Engage;
procedure Disengage;

end Autopilot;

package body Autopilot is

task Course Monitor is
entry Reset (Engage : in Boolean);

end Course-Monitor;

function Is-Engaged return Boolean is

end IsEngaged;

procedure Engage is

end Engage;

58 Ada QUALITY AND STYLE

procedure Disengage is

end Disengage;

task body courseMonitor is

accept Reset (Engage : in Boolean) do

end Reset;

end Course-Monitor;

end Autopilot;

rationale

Repeating names on the end of these compound statements ensures consistency throughout the code. In
addition, the named end provides a reference for the reader if :he unit spans a page or screen boundary,
or if it contains a nested unit.

5.2 PARAMETER LISTS

A subprogram or entry parameter list is the interface to the abstraction implemented by the subprogram or

entry. It is important that it is clear and that it is expressed in a consistent style. Careful decisions about
formal parameter naming and ordering can make the purpose of the subprogram easier to understand which
can make it easier to use.

5.2.1 Formal Parameters

guideline

* Name formal parameters descriptively to reduce the need for comments.

example
List Manager.Insert (Element => NewEmployee,

Into List => ProbationaryEmployees,
AtPosition => I);

rationale

Following the variable naming guidelines (Guidelines 3.2.1 and 3.2.3) for formal parameters can make
calls to subprograms read more like regular prose, as shown in the example above where no comments
are necessary. Descriptive names of this sort can also make the code in the body of the subprogram
more clear.

5.2.2 Named Association

guideline

"* Use named parameter association in calls of infrequently used subprograms or entries with many
formal parameters.

"* Use named association when instantiating generics.

"* Use named association for clarification when the actual parameter is any literal or expression.

"* Use named association when supplying a nondefault value to an optional parameter.

Instantlation

- Use named parameter association in calls of subprograms or entries called from less than five places
in a single source file or with more than two formal parameters.

PROGRAMMING PRACTICES 59

example
EncodeTelemetryPacket (Source => PowerElectronics,

Content => Temperature,
Value =>

ReadTemperature_Sensor(PowerElectronics),
Time => CurrentTime,
Sequence => NextPacketID,
Vehicle => This_Spacecraft,
Primary Module => True);

rationale

Calls of infrequently use-I subprograms or entries with many formal parameters can be difficult to
understand without refeaing to the subprogram or entry code. Named parameter association can make
these calls more readable.

When the formal parameters have been named appropriately, it is easier to determine exactly what
purpose the subprogram serves without looking at its code. This reduces the need for named constants
that exist solely to make calls more readable. It also allows variables used as actual parameters to be
given names indicating what they are without regard to why they are being passed in a call. An actual
parameter, which is an expression rather than a variable, cannot be named otherwise.

Named association allows subprograms to have new parameters inserted with minimal ramifications to
existing calls.

note

The judgment of when named parameter association improves readability is subjective. Certainly,
simple or familiar subprograms such as a swap routine or a sine function do not require the extra
clarification of named association in the procedure call.

caution

A consequence of named parameter association is that the formal parameter names may not be changed
without modifying the text of each call.

5.2.3 Default Parameters

guideline

"* Provide default parameters to allow for occasional, special use of widely used subprograms or
entries.

"* Place default parameters at the end of the formal parameter list.

"* Consider providing default values to new parameters added to an existing subprogram.

example

Chapter 14 of the Ada Language Reference Manual (Department of Defense 1983) contains many
examples of this practice.

rationale
Often, the majority of uses of a subprogram or entry need the same value for a given parameter.
Providing that value, as the default for the parameter, makes the parameter optional on the majority of
calls. It also allows the remaining calls to customize the subprogram or entry by providing different
values for that parameter.

Placing default parameters at the end of the formal parameter list allows the caller to use positional
association on the call, otherwise defaults are available only when named association is used.

Often during maintenance activities, you increase the functionality of a subprogram or entry. This
requires more parameters than the original form for some calls. New parameters may be required to
control this new functionality. Give the new parameters default values which specify the old
functionality. Calls needing the old functionality need not be changed; they take the defaults. This is
true if the new parameters are added to the end of the parameter list, or if named association is used on
all calls. New calls needing the new functionality can specify that by providing other values for the new
parameters.

60 Ada QUALITY AND STYLE

This enhances maintainability in that the places which use the modified routines do not themselves have
to be modified, while the previous functionality levels of the routines are allowed to be "reused."

exceptions

Do not go overboard. If the changes in functionality are truly radical, you should be preparing a separate
routine rather than modifying an existing one. One indicator of this situation would be that it is difficult
to determine value combinations for the defaults that uniquely and naturally require the more restrictive
of the two functions. In such cases, it is better to go ahead with creation of a separate routine.

5.2.4 Mode Indication

guideline

"* Show the mode indication of all procedure and entry parameters (Nissen and Wallis 1984).

"* Use in out only when the parameter is both read from and updated.

example
procedure OpenFile (File_Name in String;

OpenStatus out Status-codes);

entry Acquire (Key in capability;
Resource out TapeDrive);

rationale

By showing the mode of parameters, you aid the reader. If you do not specify a parameter mode, the
default mode is in. Explicitly showing the mode indication of all parameters is a more assertive action
than simply taking the default mode. Anyone reviewing the code later will be more confide:it that you
intended the parameter mode to be in.

Use the mode that reflects the actual use of the parameter. Only use in out mode when reading and
writing to a parameter.

exception

It may be necessary to consider several alternative implementations for a given abstraction. For
example, a bounded stack can be implemented as a pointer to an array. Even though an update to the
object being pointed to does not require changing the pointer value itself, you may want to consider
making the mode in out to allow changes to the implementation and to document more accurately what
the operation is doing. If you later change the implementation to a simple array, the mode will have to
be in out, potentially causing changes to all places that the routine is called.

5.3 TYPES
In addition to determining the possible values for variables, type names, and distinctions can be very
valuable aids in developing safe, readable, and understandable code. Types clarify the structure of your data
and can limit or restrict the operations performed on that data. "Keeping types distinct has been found to be
a very powerful means of detecting logical mistakes when a program is written and to give valuable assistance
whenever the program is being subsequently maintained." (Pyle 1985) Take advantage of Ada's strong
typing capability in the form of subtypes, derived types, task types, private types, and limited private types.

The guidelines encourage much code to be written to ensure strong typing (i.e., subtypes). While it might
appear that there would be execution penalties for this amount of code, this is usually not the case. In
contrast to other conventional languages, Ada has a less direct relationship between the amount of code that
is written and the size of the resulting executable program. Most of the strong type checking is performed at
compilation time rather than execution time, so the size of the executable code is not greatly affected.

5.3.1 Derived Types and Subtypes

guideline

* Use existing types as building blocks by deriving new types from them.

* Use range constraints on subtypes.

PROGRAMMING PRACTICES 61

"* Define new types, especially derived types, to include the largest set of possible values, including
boundary values.

"* Constrain the ranges of derived types with subtypes, excluding boundary values.

example

Type Table is a building block for the creation of new types:
type Table is

record
Count List Size Empty;
List EntryList EmptyList;

end record;

type TelephoneDirectory is new Table;
type DepartmentInventory is new Table;

The following are distinct types that cannot be intermixed in operations that are not programmed
explicitly to use them both:

type Dollars is new Number;
type Cents is new Number;

Below, SourceTail has a value outside the range of ListingPaper when the line is empty. All the
indices can be mixed in expressions, as long as the results fall within the correct subtypes:

type Columns is range FirstColumn - 1 .. ListingWidth + 1;
subtype ListingPaper is

Columns range FirstColumn .. ListingWidth;
subtype Dumb Terminal is

Columns range FirstColumn DumbTerminalWidth;

type Line is array (Columns range <>) of Bytes;
subtype ListingLine is Line (Listing_Paper);
subtype TerminalLine is Line (DumbTerminal);

Source-Tail : Columns := Columns'First;
Source : Listing_Line;
Destination Terminal_Line;

Destination(Destination'First .. SourceTail - Destination'Last)
Source(Columns'Succ(Destination'Last) SourceTail);

rationale

The name of a deiived type can make clear its intended use and avoid proliferation of similar type
definitions. Objects of two derived types, even though derived from the same type, cannot be mixed in
operations unless such operations are supplied explicitly or one is convened to the other explicitly. This
prohibition is an enforcement of strong typing.

Define new types, derived type-s, and subtypes cautiously and deliberately. The concepts of subtype and
derived type are not equivalent, but they can be used to advantage in concert. A subtype limits the range
of possible values for a type, but does not define a new type.

Types can have highly constrained sets of values without eliminating useful values. Used in concert,
derived types and subtypes can eliminate many flag variables and type conversions within executable
statements. This renders the program more readable, enforces the abstraction, and allows the compiler
to enforce strong typing constraints.

Many algorithms begin or end with values just outside the normal range. If boundary values are not
compatible within subexpressions, algorithms can be needlessly complicated. The program can become
cluttered with flag variables and special cases when it could just test for zero or some other sentinel value
just outside normal range.

The type columns and the subtype Listing-Paper in the example above demonstrate how to allow
sentinel values. The subtype Listing-Paper could be used as the type for parameters of subprograms
declared in the specification of a package. This would restrict the range of values which could be
specified by the caller. Meanwhile, the type COLUMNS could be used to store such values internally to the
body of the package, allowing First_Column - i to be used as a sentinel value. This combination of

62 Ada QUALITY AND STYLE

types and subtypes allows compatibility between subtypes within subexpressions without type
conversions as would happen with derived types.

note

The price of the reduction in the number of independent type declarations is that subtypes and derived
types change when the base type is redefined. This trickle-down of changes is sometimes a blessing and
sometimes a curse. However, usually it is intended and beneficial.

5.3.2 Anonymous Types

guideline

"* Avoid anonymous types.

"• Use anonymous types for array variables when no suitable type exists and the array will not be
referenced as a whole.

example

Use
type Buffer_Index is range 1 .. 80;
type Buffer is array (Buffer Index) of Character;

InputLine Buffer;

rather than
InputLine array (BufferIndex) of character;

rationale

Although Ada allows anonymous types, they have limited usefulness and complicate program
modification. For example, except for arrays, a variable of anonymous type can never be used as an
actual parameter because it is not possible to define a formal parameter of the same type. Even though
this may not be a limitation initially, it precludes a modification in which a piece of code is changed to a
subprogram. Also, two variables declared using the same anonymous type declaration are actually of
different types.

Even though the implicit conversion of array types during parameter passing is supported in Ada, it is
difficult to justify not using the type of the parameter. In most situations, the type of the parameter is
visible and easily substituted in place of an anonymous array type. The use of an anonymous array type
implies that the array is only being used as a convenient way to implement a collection of values. It is
misleading to use an anonymous type and then treat the variable as an object.

note

For anonymous task types, see Guideline 6.1.2.

In reading the Ada Language Reference Manual (Department of Defense 1983), you will notice that
there are cases when anonymous types are mentioned abstractly as part of the description of the Ada
computational model. These cases do not violate this guideline.

5.3.3 Private Types

guideline

"* Use limited private types in preference to private types.

"* Use private types in preference to nonprivate types.

"• Explicitly export needed operations rather than easing restrictions.

example

package Packet_Telemetry is

type Frame_Header is limited private;
type FrameData is private;
type Frare_Codes is (Main_Bus_Voltage, TransmitterI Power);

PROGRAMMING PRACTICES 63

private

type Frame Header is
record

end record;

type Frame_Data is
record

end record;

end PacketTelemetry;

rationale

Limited private types and private types support abstraction and information hiding better than
nonprivate types. The more restricted the type, the better information hiding is served. This, in turn,
allows the implementation to change without affecting the rest of the program. While there are many
valid reasons to export types, it is better to try the preferred route first, loosening the restrictions only as
necessary. If it is necessary for a user of the package to use a few of the restricted operations, it is better
to export the operations explicitly and individually via exported subprograms than to drop a level of
restriction. This practice retains the restrictions on other operations.

Limited private types have the most restricted set of operations available to users of a package. Of the
types that must be made available to users of a package, as many as possible should be limited private.
The operations available to limited private types are membership tests, selected components,
components for the selections of any discriminant, qualification and explicit conversion, and attributes
"Base and -size. Objects of a limited private type also have the attribute -constrained if there are
discriminants. None of these operations allow the user of the package to manipulate objects in a way that
depends on the structure of the type.

If additional operations must be available to the type, the restrictions may be loosened by making it a
private type. The operations available on objects of private types that are not available on objects of
limited private types are assignment and tests for equality and inequality. There are advantages to the
restrictive nature of limited private types. For example, assignment allows copies of an object to be
made. This could be a problem if the object's type is a pointer.

note
The predefined packages Direct_10 and Sequential _O do not accept limited private types as generic
parameters. This restriction should be considered when I/O operations are needed for a type.

5.4 DATA STRUCTURES

The data structuring caplbilities of Ada are a powerful resource; therefore, use them to model the data as
closely as possible. It is possible to group logically related data and let the language control the abstraction
and operations on the data rather than requiring the programmer or maintainer to do so. Data can also be
organized in a building block fashion. In addition to showing how a data structui e is organized (and possibly
giving the reader an indication as to why it was organized that way), creating the data structure from smaller
components allows those components to be reused themselves. Using the features that Ada provides can
increase the maintainability of your code.

5.4.1 Heterogeneous Data

guideline
• Use records to group heterogeneous but related data.

• Consider records to map to I/O device data.

example
type PropulsionMethod is (Sail, Diesel. Nuclear);

64 Ada QUALITY AND STYLE

type craft is
record

Name CommonName;
Plant Propulsion-Method;
Length Feet;
Beam Feet;
Draft Feet;

end record;

type Fleet is array (i .. Fleet-Size) of Craft;

rationale

You help the maintainer find all of the related data by gathering it into the same construct, simplifying
any modifications that apply to all rather than part. This in turn increases reliability. Neither you nor an
unknown maintainer are liable to forget to deal with all the pieces of information in the executable
statements, especially if updates are done with aggregate assignments whenever possible.

The idea is to put the information a maintainer needs to know where it can be found with the minimum
of effort. For example, if all information relating to a given craft is in the same place, the relationship is
clear both in the declarations and especially in the code accessing and updating that information. But, if
it is scattered among several data structures, it is less obvious that this is an intended relationship as
opposed to a coincidental one. In the latter case, the declarations may be grouped together to imply
intent, but it may not be possible to group the accessing and updating code that way. Ensuring the use of
the same index to access the corresponding element in each of several parallel arrays is difficult if the
accesses are at all scattered.

If the application must interface directly to hardware, the use of records, especially in conjunction with
record representation clauses, could be useful to map onto the layout of the hardware in question.

note

It may seem desirable to store heterogeneous data in parallel arrays in what amounts to a
FORTRAN-like style. This style is an artifact of FORTRAN's data structuring limitations. FORTRAN
only has facilities for constructing homogeneous arrays. Ada's variant record types offer one way to
specify what are called nonhomogeneous arrays or heterogeneous arrays.

exceptions

If the application must interface directly to hardware, and the hardware requires that information be
distributed among various locations, then it may not be possible to use records.

5.4.2 Nested Records

guideline

* Record structure, should not always be flat. Factor out common parts.

* For a large record structure, group related components into smaller subrecords.

* For nested records, pick element names that read well when inner elements are referenced.

example
type Coordinate is

record
Row Local Float;
Column Local Float;

end record;

type Window is
record

TopLeft Coordinate;
Bottom Right Coordinate;

end record ;

rationale

You can make complex data structures understandable and comprehensible by composing them of
familiar building blocks. This technique works especially well for large record types with parts which fall

PROGRAMMING PRACTICES 65

into natural groupings. The components factored into separately declared records, based on a common
quality or purpose, correspond to a lower level of abstraction than that represented by the larger record.

note

A carefully chosen name for the component of the larger record that is used to select the smaller
enhances readability, for example:

if Windowl.BottomRight.Row > Window2.Top_Left.Row then .

5.4.3 Dynamic Data

guideline

"* Differentiate between static and dynamic data. Use dynamically allocated objects with caution.

"* Use dynamically allocated data structures only when it is necessary to create and destroy them
dynamically or to be able to reference them by different names.

"* Do not drop pointers to undeallocated objects.

"* Do not leave dangling references to deallocated objects.

"* Initialize all access variables and components within a record.

"• Do not rely on memory deallocation.

"* Deallocate explicitly.

* Use length clauses to specify total allocation size.

* Provide handlers for storageError.

example

These lines show how a dangling reference might be created:
P1 new Object;
P2 P1;
UncheckedObjectDeallocation (P2);

This line can raise an exception due to referencing the deallocated object:
X := Pl.all;

In the following three lines, if there is no intervening assignment of the value of Pi to any other pointer,
the object created on the first line is no longer accessible after the third line. The only pointer to the
allocated object has been dropped.

P1 new object;

P1 P2;

rationale

See also Guidelines 5.9.1, 5.9.2, and 6.1.3 for variations on these problems. A dynamically allocated
object is an object created by the execution of an allocator ("new"). Allocated objects referenced by
access variables allow you to generate aliases, which are multiple references to the same object.
Anomalous behavior can arise when you reference a deallocated object by another name. This is called
a dangling reference. Totally disassociating a still-valid object from all names is called dropping a
pointer. A dynamically allocated object that is not associated with a name cannot be referenced or
explicitly deallocated.

A dropped pointer depends on an implicit memory manager for reclamation of space. It also raises
questions for the reader as to whether the loss of access to the object was intended or accidental.

An Ada environment is not required to provide deallocation of dynamically allocated objects. If
provided, it may be provided implicitly (objects are deallocated when their access type goes out of
scope), explicitly (objects are deallocated when UncheckedDeal locat ion is called), or both. To increase
the likelihood of the storage space being reclaimed, it is best to call Unchecked Deallocation explicitly
for each dynamically object when you are finished using it. Calls to UncheckedDeallocation also
document a deliberate decision to abandon an object, making the code easier to read and understand.

66 Ada QUALITY AND STYLE

To be absolutely certain that space is reclaimed and reused, manage your own "free list." Keep track of
which objects you are finished with, and reuse them instead of dynamically allocating new objects later.

The dangers of dangling references are that you may attempt to use them, thereby accessing memory
which you have released to the memory manager, and which may have been subsequently allocated for
another purpose in another part of your program. When you read from such memory, unexpected
errors may occur because the other part of your program may have previously written totally unrelated
data there. Even worse, when you write to such memory you can cause errors in an apparently unrelated
part of the code by changing values of variables dynamically allocated by that code. This type of error
can be very difficult to find. Finally, such errors may be triggered in parts of your environment that you
didn't write, for example, in the memory management system itself which may dynamically allocate
memory to keep records about your dynamically allocated memory.

Keep in mind that any uninitialized or unreset component of a record or array can also be a dangling
reference or carry a bit pattern representing inconsistent data.

Whenever you use dynamic allocation it is possible to run out of space. Ada provides a facility (a length
clause) for requesting the size of the pool of allocation space at compile time. Anticipate that you can
still run out at run time. Prepare handlers for the exception StorageError, and consider carefully what
alternatives you may be able to include in the program for each such situation.

There is a school of thought that dictates avoidance of all dynamic allocation. It is largely based on the
fear of running out of memory during execution. Facilities such as length clauses and exception handlers
for storage Error provide explicit control over memory partitioning and error recovery, making this
fear unfounded.

5.5 EXPRESSIONS

Properly coded expressions can enhance the readability and understandability of a program. Poorly coded
expressions can turn a program into a maintainer's nightmare.

5.5.1 Range Values

guideline
a Use 'First or 'Last instead of numeric literals to represent the first or last values of a range.

6 Use the type or subtype name of the range instead of 'First.. 'Last.

example
type Temperature is range AllTimeLow .. AllTime_High;
type Weather_Stations is range 1 . . Max_Stations;

Current Temperature Temperature := 60;
Offset Temperature;

for I in Weather_Stations loop
Offset := Current Temperature - Temperature'First;

end loop;

rationale

In the example above, it is better to use Weather Stations in the for loop than to use
Weather Stations'First .. Weather Stations'Last or 1 . . Max_Stations, because it is clearer, less
error-prone, and less dependent on the definition of the type weatherStat ions. Similarly, it is better to
use Temperature'First in the offset calculation than to use All_TimeLow, because the code will still be
correct if the definition of the subtype Temperature is changed. This enhances program reliability.

caution

When you implicitly specify ranges and attributes like this, be careful that you use the correct type or
subtype name. It is easy to refer to a very large range without realizing it. For example, given the
declarations:

PROGRAMMING PRACTICES 67

type LargeRange is new Integer;
subtype Small-Range is Large-Range range 1 .. 10;

then the first declaration below works fine, but the second one is probably an accident and raises an
exception on most machines because it is requesting a huge array (indexed from the smallest integer to
the largest one):

Array_ 1 array (Small Range) of Integer;
Array_2 array (Large-Range) of Integer;

5.5.2 Array Attributes
guideline

"* Use array attributes 'First, 'Last, or 'Length instead of numeric literals for accessing arrays.

"* Use the 'Range of the array instead of the name of the index subtype to express a range.

* Use 'Range instead of 'First .. 'Last tO express a range.

example
subtype Name_String is String (1 .. NameLength);

File-Path : Name_String := (others => "

for I in File Path'Range loop

end loop;

rationale

In the example above, it is better to use Name String'Range in the for loop than to use NameStringSize,
Name_String'First . . Name_String'Last, or 1 .. 30, because it is clearer, less error-prone, and less
dependent on the definitions of NameString and Name_StringSize. If Name_String is changed to have a
different index type, or if the hounds of the array are changed, this will still work correctly. This
enhances program reliability.

5.5.3 Parenthetical Expressions

guideline

"* Use parentheses to specify the order of subexpression evaluation to clarify expressions (NASA
1987).

"* Use parentheses to specify the order of evaluation for subexpressions whose correctness depends on
left to right evaluation.

example
(1.5 * X**2)/A - (6.5*X + 47,0)

2*1 + 4*Y + 8*Z + C

rationale

The Ada rules of operator precedence are defined in Section 4.5 of Department of Defense (1983) and
follow the same commonly accepted precedence of algebraic operators. The strong typing facility in
Ada combined with the common precedence rules make many parentheses unnecessary. However,
when an uncommon combination of operators occurs, it may be helpful to add parentheses even when
the precedence rules apply. The expression,

5 + ((Y ** 3) mod 10)

is clearer, and equivalent to
5 + Y**3 mod 10

68 Ada QUALITY AND STYLE

The rules of evaluation do specify left to right evaluation for operators with the same precedence level.
However, it is the most commonly overlooked rule of evaluation when checking expressions for
correctness.

5.5.4 Positive Forms of Logic

guideline

"* Avoid names and constructs that rely on the use of negatives.

"• Choose names of flags so they represent states that can be used in positive form.

example

Use
if OperatorMissing then

rather than either
if not Operator-Found then

or
if not Operator-Missing then

rationale

Relational expressions can be more readable and understandable when stated in a positive form. As an
aid in choosing the name, consider that the most frequently used branch in a conditional construct
should be encountered first.

exception

There are cases in which the negative form is unavoidable. If the relational expression better reflects
what is going on in the code, then inverting the test to adhere to this guideline is not recommended.

5.5.5 Short Circuit Forms of the Logical Operators

guideline

0 Use short-circuit forms of the logical operators.

example

Use
if Y /= 0 or else (X/Y) /= 10 then

or
if Y /= 0 then

if (X/Y) /= 10 then

rather than either
if Y /= o and (x/Y) /= 10 then

or to avoid NumericError
if (X/Y) /= 10 then

Use
if Target /= null and then Target.Distance < Threshold then

rather than
if Target.Distance < Threshold then

to avoid referencing a field in a non-existent object.

rationale

The use of short-circuit control forms prevents a class of data-dependent errors or exceptions that can
occur as a result of expression evaluation. The short-circuit forms guarantee an order of evaluation and

PROGRAMMING PRACTICES 69

an exit from the sequence of relational expressions as soon as the expression's result can be determined.

In the absence of short-circuit forms, Ada does not provide a guarantee of the order of expression
evaluation, nor does the language guarantee that evaluation of a relational expression is abandoned
when it becomes clear that it evaluates to False (for and) or True (for or).

note

If it is important that all parts of a given expression always be evaluated, the expression probably violates
Guideline 4.1.3 which limits side-effects in functions.

5.5.6 Accuracy of Operations With Real Operands
guideline

0 Use <= and >= in relational expressions with real operands instead of .

example
Current-Temperature : Temperature := 0.0;
Temperature Increment Temperature := 1.0 / 3.0;
Maximum-Temperature constant 100.0;

loop

CurrentTemperature :
Current Temperature + Temperature_Increment;

exit when Current-Temperature >= Maximum_Temperature;

end loop;

rationale

Fixed and floating point values, even if derived from similar expressions, may not be exactly equal. The
imprecise, finite representations of real numbers in hardware always have round-off errors so that any
variation in the construction path or history of two reals has the potential for resulting in different
numbers, even when the paths or histories are mathematically equivalent.

The Ada definition of model intervals also means that the use of <= is more portable than either < or

note

Floating point arithmetic is treated in Guideline 7.2.8.

exceptions

If your application must test for an exact value of a real number (e.g., testing the precision of the
arithmetic on a certain machine), then the = would have to be used. But never use = on real operands as
a condition to exit a loop.

5.6 STATEMENTS

Careless or convoluted use of statements can make a program hard to read and maintain even if its global
structure is well organized. You should strive for simple and consistent use of statements to achieve clarity of
local program structure. Some of the guidelines in this section counsel use or avoidance of particular
statements. As pointed out in the individual guidelines, rigid adherence to those guidelines would be
excessive, but experience has shown that they generally lead to code with improved reliability and
maintainability.

5.6.1 Nesting

guideline

• Minimize the depth of nested expressions (Nissen and Wallis 1984).

70 Ada QUALITY AND STYLE

"* Minimize the depth of nested control structures .Nissen and Wallis 1984).

"• Try simplification heuristics (see note).

instantiation

- Do not nest expressions or control structures beyond a nesting level of five.

example

The following section of code:

if not Conditionl then

if Condition_2 then
Action_A;

else -- not Condition_2
Action_B;

end if;

else -- conditionI
Action_C;

end if;

can be rewritten more clearly and with less nesting as:
if ConditionI then

Action C;
elsif Condition_2 then

ActionA;

else -- not (Condition_1 or Condition_2)
Act ion B;

end if;

rationale

Deeply nested structures are confusing, difficult to understand, and difficult to maintain. The problem
lies in the difficulty of determining what part of a program is contained at any given level. For
expressions, this is important in achieving the correct placement of balanced grouping symbols and in
achieving the desired operator precedence. For control structures, the question involves what part is
controlled. Specifically, is a given statement at the proper level of nesting, i.e., is it too deeply or too
shallowly nested, or is the given statement associated with the proper choice, e.g., for if or case
statements? Indentation helps, but it is not a panacea. Visually inspecting alignment of indented code
(mainly intermediate levels) is an uncertain job at best. To minimize the complexity of the code, keep
the maximum number of nesting levels between three and five.

note

Ask yourself the following questions to help you simplify the code:

- Can some part of the expression be put into a constant or variable?

- Does some part of the lower nested control structures represent a significant, and perhaps reusable
computation that I can factor into a subprogram?

- Can I convert these nested if statements into a case statement?

- Am I using else if where I could be using elsif?

- Can I reorder the conditional expressions controlling this nested structure?

- Is there a different design that would be simpler?

exceptions

If deep nesting is required frequently, there may be overall design decisions for the code that should be
changed. Some algorithms require deeply nested loops and segments controlled by conditional
branches. Their continued use can be ascribed to their efficiency, familiarity, and time proven utility.
When nesting is required, proceed cautiously and take special care with the choice of identifiers and
loop and block names.

PROGRAMMING PRACTICES 71

5.6.2 Slices
guideline

• Use slices rather than a loop to copy part of an array.

example
First constant Index Index"First;
Second constant Index Index'Succ(First);
Third constant Index Index'Succ(Second);

type Vector is array (Index range <>) of Element;

subtype ColumnVector is Vector (Index);
type Square-Matrix is array (Index) of ColumnVector;

subtype Small_Range is Index range First .. Third;
subtype Diagonals is Vector (Small Range);
type Tri Diagonal is array (Index) of Diagonals;

Markov Probabilities : Square_Matrix;
Diagonal-Data Tri_Diagonal;

-- Remove diagonal and off diagonal elements.
DiagonalData(Index'First) (First) Null Value;
DiagonalData(Index'First) (Second . Third) :=

MarkoveProbabilities(Index'First) (First . Second);

for I in Second .. Index'Pred(Index'Last) loop
Diagonal_Data(I) :=

MarkovProbabilities(I)(Index'Pred(I) Index'Succ(I));
end loop;

DiagonalData(Index'Last) (First .. Second)
Markov Probabilities(Index'Last)

(Index'Pred(Index'Last) . Index°Last)
Diagonal Data(Index'Last)(Third) Null_Value;

rationale

An assignment statement with slices is simpler and clearer than a loop, and helps the reader see the
intended action. Slice assignment can be faster than a loop if a block move instruction is available.

5.6.3 Case Statements

guideline

"* Never use an others choice in a case statement.

"* Do not use ranges of enumeration literals in case statements.

example
type Color is (Red, Green, Blue, Purple);
Car Color : Color := Red;

case Car Color is
when Red .. Blue =>
when Purple => ...

end case; -- Car-Color

Now consider a change in the type:
type Color is (Red. Yellow, Green, Blue, Purple);

This change may have an unnoticed and undesired effect in the case statement. If the choices had been
enumerated explicitly, as when Red I Green I Blue => instead of when Red . . Blue =>, then the case
statement would have not have compiled. This would have forced the maintainer to make a conscious
decision about what to do in the case of Yellow.

72 Ada QUALITY AND STYLE

rationale

All possible values for an object should be known and should be assigned specific actions. Use of an
others clause may prevent the developer from carefully considering the actions for each value. A
compiler warns the user about omitted values, if an others clause is not used.

Each possible value should be explicitly enumerated. Ranges can be dangerous because of the possibility
that the range could change and the case statement may not be reexamined.

exception

It is acceptable to use ranges for possible values only when the user is certain that new values will never
be inserted among the old ones, as for example, in the range of ASCII characters: "a' . Z'.

note

Ranges that are needed in case statements can use constrained subtypes to enhance maintainability. It is
easier to maintain because the declaration of the range can be placed where it is logically part of the
abstraction, not buried in a case statement in the executable code.

subtype Lower_Case is Character range "a, .. "
subtype Uppercase is Character range 'A' ..

subtype Control is Character range ASCII.Nul .. ASCII.Us;
subtype Numbers is character range '0' .. '9'

case Input_Char is
when LowerCase => Capitalize(Input Char);
when UpperCase => null;
when Control => raise Invalid Input;
when Numbers => null;

end case;

5.6.4 Loops
guideline

* Use for loops whenever possible.

* Use while loops when the number of iterations cannot be calculated before entering the loop, but a
simple continuation condition can be applied at the top of the loop.

* Use plain loops with exit statements for more complex situations.

* Avoid exit statements in while and for loops.

* Minimize the number of ways to exit a loop.

example

To iterate over all elements of an array:
for 1 in ArrayName'Range loop

end loop;

To iterate over all elements in a linked list:

Pointer := HeadofList;
while Pointer /= null loop

Pointer := Pointer.Next;
end loop;

Situations requiring a "loop and a half" arise often. For this use:

PAndq_Processing:
loop

P;
exit PAnd_Q_Processing when conditionDependentOn_P;
Q;

end loop PAnd-_QProcessing:

rather than:

PROGRAMMING PRACTICES 73

P;
while not ConditionDependentOnP loop

Q;
F;

end loop;

rationale
A for loop is bounded, so it cannot be an "infinite loop." This is enforced by the Ada language which
requires a finite range in the loop specification and which does not allow the loop counter of a for loop to
be modified by a statement executed within the loop. This yields a certainty of understanding for the
reader and the writer not associated with other forms of loops. A for loop is also easier to maintain
because the iteration range can be expressed using attributes of the data structures upon which the loop
operates, as shown in the example above where the range changes automatically whenever the
declaration of the array is modified. For these reasons, it is best to use the for loop whenever possible;
that is, whenever simple expressions can be used to describe the first and last values of the loop counter.

The while loop has become a very familiar construct to most programmers. At a glance it indicates the
corndition under which the loop continues. Use the while loop whenever it is not possible to use the fur
loop, but there is a simple boolean expression describing the conditions under which the loop should
continue, as sho,:,n in the example above.

The plain loop statement should be used in more complex situations, even if it is possible to contrive a
solution using a for or while loop in conjunction with extra flag variables or exit statements. The criteria
in selecting a loop construct is to be as clear and maintainable as possible. It is a bad idea to use an exit
statement from within a for or while loop because it is misleading to the reader after having apparently
described the complete set of loop conditions at the top of the loop. A reader who encounters a plain
loop statement expects to see exit statements.

There are some familiar looping situations which are best achieved with the plain loop statement. For
example, the semantics of the Pascal repeat until loop, where the loop is always executed at least once
before the termination test occurs, are best achieved by a plain loop with a single exit at the end of the
loop. Another common situation is the "loop and a half" construct, shown in the example above, where
a loop must terminate somewhere within the sequence of statements of the body. Complicated "loop
and a half" constructs simulated with while loops often require the introduction of flag variables, or
duplication of code before and during the loop, as shown in the example. Such contortions make the
code more complex and less reliable.

Minimize the number of ways to exit a loop in order to make the loop more understandable to the
reader. It should be rare that you need more than two exit paths from a loop. When you do, be sure to
use exit statements for all of them, rather than adding an exit statement to a for or while loop.

5.6.5 Exit Statements
guideline

"* Use exit statements to enhance the readability of loop termination code (NASA 1987).

"• Use exit when ... rather than if ... then exit whenever possible (NASA 1987).

• Review exit statement placement.

example

See the examples in Guidelines 5.1.1 and 5.6.4.

rationale

It is more readable to use exit statements than to try to add boolean flags to a while loop condition to
simulate exits from the middle of a loop. Even if all exit statements would be clustered at the top of the
loop body, the separation of a complex condition into multiple exit statements can simplify and make it
more readable and clear. The sequential execution of two exit statements is often more clear than the
short-circuit control forms.

The exit when form is preferable to the if ... then, exit form because it makes the word exit more
visible by not nesting it inside of any control construct. The if . .. then exit form is needed only in the
case where other statements, in addition to the exit statement, must be executed conditionally. For
example:

74 Ada QUALITY AND STYLE

if Status = Done then
ShutDown;

return;

end if;

Loops with man), scattered exit statements can indicate fuzzy thinking as regards the loop's purpose in
the algorithm. Such an algorithm might be coded better some other way, e.g., with a series of loops.
Some rework can often reduce the number of exit statements and make the code clearer.

See also Guidelines 5.1.3 and 5.6.4.

5.6.6 Recursion and Iteration Bounds

guideline
"* Consider specifying bounds on loops.

"* Consider specifying bounds on recursion.

example
Establishing an iteration bound:

Safety_Counter := 0;

ProcessList:
loop

exit when CurrentItem = null;

CurrentItem := Current_Item.Next;

Safety Counter := SafetyCounter + 1;
if SafetyCounter > I_000_000 then

raise SafetyError;
end if;

end loop ProcessList;

Establishing a recursion bound:
procedure DepthFirst (Root in Tree;

SafetyCounter : in RecursionBound
Recursion Bound'Last) is

begin
if Root /= null then

if Safety Counter = 0 then
raise Recursion-Error;

end if;

DepthFirst
(Root.LeftBranch, Safety Counter - 1); -- recursivecall

DepthFirst
(Root.Right_Branch, SafetyCounter - lj; -- recursivecall

-- normal subprogram body
end if;

end DepthFirst;

Following are examples of this subprogram's usage. One call specifies a maximum recursion depth of 50.

The second takes the default (one thousand). The third uses a computed bound:

DepthFirst(Root, 50)S
DepthFirst(Root);
DepthFirst(Root, Current_Tice_Height):

PROGRAMMING PRACTICES 75

rationale
Recursion, and iteration using structures other than for statements, can be infinite because the expected
terminating condition does not arise. Such faults are sometimes quite subtle, may occur rarely, and may
be difficult to detect because an external manifestation might be absent or substantially delayed.

By including counters and checks on the counter values, in addition to the loops themselves, you can
prevent many forms of infinite loops. The inclusion of such checks is one aspect of the technique called
Safe Programming (Anderson and Witty i978).

The bounds of these checks do not have to be exact, just realistic. Such counters and checks are not part
of the primary control structure of the program but a benign addition functioning as an execution-time
"safety net" allowing error detection and possibly recovery from potential infinite loops or infinite
recursion.

note

If a loop uses the for iteration scheme (Guideline 5.6.4), it follows this guideline.

exceptions

Embedded control applications have loops that are intended to be infinite. Only a few loops within such
applications should qualify as exceptions to this guideline. The exceptions should be deliberate (and
documented) policy decisions.

This guideline is most important to safety critical systems. For other systems, it may be overkill.

5.6.7 Goto Statements
guideline

0 Do not use goto statements.

rationale

A goto statement is an unstructured change in the control flow. Worse, the label does not require an
indicator of where the corresponding goto statement(s) are. This makes code unreadable and makes its
correct execution suspect.

Other languages use goto statements to implement loop exits and exception handling. Ada's support of
these constructs makes the goto statement extremely rare.

note

If you should ever use a goto statement, highlight both it and the label with blank space. Indicate at the
label where the corresponding gore statement(s) may be found.

5.6.8 Return Statements
guideline

"* Minimize the number of returns from a subprogram (NASA 1987).

"* Highlight returns with comments or white space zo keep them from being lost in other code.

example

The following code fragment is longer and more complex than necessary:

if Pointer /= null then

if Pointer.Count > 0 then
return True;

else -- Pointer.Count = 0
return False;

end if;

else -- Pointer = null
return False;

end if;

76 Ada QUALITY AND STYLE

It should be replaced with the shorter, more concise, and clearer equivalent line:
return Pointer /= null and then Pointer.Count > 0;

rationale

Excessive use of returns can make code confusing and unreadable. Only use return statements where
warranted. Too many returns from a subprogram may be an indicator of cluttered logic. If the
application requires multiple returns, use them at the same level (i.e., as in different branchLs of a case
statement), rather than scattered throughout the subprogram code. Some rework can often reduce the
number of return statements to one and make the code more clear.

exception

Do not avoid return statements if it detracts from natural structure and code readlhility.

5.6.9 Blocks

guideline

"* Use blocks to localize the scope of declarations.

"* Use blocks to perform local renaming.

"* Use blocks to define local exception handlers.

example
with Motion;
with Accelerometer_Device;

function Maximumvelocity return Motion.velocity is

Cumulative : MotionVelocity := 0.0;

begin -- MaximumVelocity

-- Initialize the needed devices

CalculateVelocityFromSampleData:
declare

Current Motion.Acceleration := 0.0;
Accelerometer : AccelerometerDevice.Interface;
TimeDelta : Duration;

begin -- Calculate VelocityFrom_SampleData
for I in 1 .. AccelerometerDeviceSampleLimit loop

Get SamplesAndIgnore_InvalidData:
begin

Accelerometer.value(Current. TimeDelta);
exception

when NumericError I ConstraintError =>
null; -- Continue trying

when Accelerometer Device.Failure =>
raise Accelerometer Device Failed;

end GetSamples And Ignore InvalidData;

exit when Motion.'<"(Current, 0.0); -- Slowing down

Update_velocity:
declare

use Motion; -- for infix operators and exceptions;

begin
Cumulative := Cumulative + Current * Time-Delta:

exception
when NumericError I ConstraintError =>

raise Maximumvelocity_Exceeded,
end Update_Velocity;

PROGRAMMING PRACTICES 77

end loop;
end Calculate_Velocity_From_SampleData;

return Cumulative;

end Maximum_Velocity;

rationale

Blocks break up large segments of code and isolate details relevant to each subsection of codc.
Variables that are only used in a particular section of code are clearly visible when a declarative block
delineates that code.

Renaming may simplify the expression of algorithms and enhance readability for a given section of code.
But it is confusing when a rename clause is visually separated from the code to which it applies. The
declarative region allows the renames to be immediately visible when the reader is examining code which
uses that abbreviation. Guideline 5.7.1 discusses a similar guideline concerning the 'use' clause.

Local exception handlers can catch exceptions close to the point of origin and allow them to either be
handled, propogated, or converted.

5.6.10 Aggregates
guideline

"• Use an aggregate instead of a sequence of assignments to assign values to all components of a
record.

"• Use an aggregate instead of a temporary variable when building a record to pass as an actual
parameter.

"• Use positional association only when there is a conventional ordering of the arguments.

example
It is better to use aggregates:

Set_Position((X, Y));

Employee_Record := (Number => 42,
Age => 51,
Department => Software Engineering);

than to use consecutive assignments or temporary variables:
Temporary Position.X 100;
TemporaryPosition.Y 200;
Set_Position(TemporaryPosition);

EmployeeRecord.Number 42;
Employee_Record.Age =51;

Employee_Record.Department = Software-Engineering;

rationale

Using aggregates during maintenance is beneficial. If a record structure is altered, but the corresponding
aggregate is not, the compiler flags the missing field in the aggregate assignment. It would not be able to
detect the fact that a new assignment statement should have been added to a list of assignment
statements.

Aggregates can also be a real convenience in combining data items into a record or array structure
required for passing the information as a parameter. Named component association makes aggregates
more readable.

5.7 VISIBILITY

As noted in Guideline 4.2, Ada's ability to enforce information hiding and separation of concerns through
its visibility controlling features is one of the most important advantages of the language. Subverting these
features, for example by over liberal use of the use clause, is wasteful and dangerous.

78 Ada QUALITY AND STYLE

5.7.1 The Use Clause

guideline
"* Minimize using the use clause (Nissen and Wallis 1984).

"* Consider using the use clause in the following situations:
- Infix operators are needed
- Standard packages are needed and no ambiguous references are introduced
- References to enumeration literals are needed

"* Consider the renames clause to avoid the use clause.

"* Localize the effect of all use clauses.

example
This is a modification of the example from Guideline 4.2.3. The effect of a use clause is localized.

procedure Compiler is

package Listing Facilities is
end ListingFacilities;

package body ListingFacilities is separate;

end Compiler;

with Text_IO;

separate (Compiler)
package body ListingFacilities is

procedure NewLineOfPrint is
use Text_10;

begin

end NewLineOfPrint;

end ListingFacilities;

rationale
These guidelines allow you to maintain a careful balance between maintainability and readability.
Excessive use of the use clause may indeed make the code read more like prose text. However, the
maintainer may also need to resolve references and identify ambiguous operations. In the absence of
tools to resolve these references and identify the impact of changing use clauses, fully qualified names
are the best alternative.

Avoiding the use clause forces you to use fully qualified names. In large systems, there may be many
library units named in with clauses. When corresponding use clauses accompany the with clauses and
the simple names of the library packages are omitted (as is allowed by the use clause), references to
external entities are obscured and identification of external dependencies becomes difficult.

In some situations, the benefits of the use clause are clear. The use clause can make several infix
operators visible without the need for renames clauses. A standard package can be used with the
obvious assumption that the reader is very familiar with those packages and that additional overloading
will not be introduced.

You can minimize the scope of the use clause by placing it in the body of a package or subprogram or by
encapsulating it in a block to restrict visibility.

PROGRAMMING PRACTICES 79

notes

Avoiding the use clause completely can cause problems with enumeration literals, which must then be
fully qualified. This problem can be solved by declaring constants with the enumeration literals as their
values, except that such constants cannot be overloaded like enumeration literals.

An argument defending the use clause can be found in Rosen (1987).

automation note

There are tools that can analyze your Ada source code, resolve overloading of names, and automatically
convert between the use clause or fully qualified names.

5.7.2 The Renames Clause

guideline

"* Rename a long, fully qualified name to reduce the complexity if it becomes unwieldy (Guideline
3.1.4).

"* Rename declarations for visibility purposes rather than using the use clause, especially for infix
operators (Guideline 5.7.1).

* Rename parts when interfacing to reusable components originally written with nondescriptive or
inapplicable nomenclature.

* Use a project-wide standard list of abbreviations to rename common packages.

example
procedure Disk_Write (Track_Name in Track;

Item in Data) renames
SystemSpecific.DeviceDrivers.DiskHeadScheduler.Transmit;

rationale

If the renaming facility is abused, the code can be difficult to read. A renames clause can substitute an
abbreviation for a qualifier or long package name locally. This can make code more readable yet anchor
the code to the full name. However, the use of renames clauses can often be avoided or made obviously
undesirable by carefully choosing names so that fully qualified names read well. The list of renaming
declarations serves as a list of abbreviation definitions (see Guideline 3.1.4). By renaming imported
infix operators, the use clause can often be avoided. The method prescribed in the Ada Language
Reference Manual (Department of Defense 1983) for renaming a type is to use a subtype (see Guidcline
3.4.1). Often the parts recalled from a reuse library do not have names that are as general as they could
be or that match the new application's naming scheme. An interface package exporting the renamed
subprograms can map to your project's nomenclature.

5.7.3 Overloaded Subprograms

guideline

* Limit overloading to widely used subprograms that perform similar actions on arguments of different
types (Nissen and Wallis 1984).

example
function Sin (Angles in Matrix Of Radians) return Matrix;
function Sin (Angles in VectorOf_Radians) return Vector;
function Sin (Angle in Radians) return SmallReal;
function Sin (Angle in Degrees) return smallReal;

rationale

Excessive overloading can be confusing to maintainers (Nissen and Wallis 1984, 65). There is also the
danger of hiding declarations if overloading becomes habitual. Attempts to overload an operation may
actually hide the original operation if the parameter profile is not distinct. From that point on, it is not
clear whether invoking the new operation is what the programmer intended or whether the programmer
intended to invoke the hidden operation and accidentally hid it.

80 Ada QUALITY AND STYLE

note

This guideline does not prohibit subprograms with identical names declared in different packages.

5.7.4 Overloaded Operators

guideline

"• Preserve the conventional meaning of overloaded operators (Nissen and Wallis 1984).

"* Use "÷" to identify adding, joining, increasing, and enhancing kinds of functions.

"* Use "-" to identify subtraction, separation, decreasing, and depleting kinds of functions.

example
function "+" (X in Matrix;

Y : in Matrix)
return Matrix;

Sum := A + B;

rationale

Subverting the conventional interpretation of operators leads to confusing code.

note

There are potential problems with any overloading. For example, if there are several versions of the "÷"

operator, and a change to one of them affects the number or order of its parameters, locating the
occurrences that must be changed can be difficult.

5.7.5 Overloading the Equality Operator
guideline

"* Do not depend on the definition of equality provided by private types.

"* When overloading the equality operator for limited private types, maintain the properties of an
algebraic equivalence relation.

rationale

The predefined equality operation provided with private types is dependent on the data structure chosen
to implement that type. If access types are used, then equality will mean the operands have the same
pointer value. If discrete types are used, then equality will mean the operands have the same value. If a
floating point type is used, then equality is based on Ada model intervals (see Guideline 7.2.8.).

Any assumptions about the meaning of equality for private types will create a dependency on the
implementation of that type. See Gonzalez (1992) for a detailed discussion.

For limited private types, the definition of ".=" is optional. When provided, however, there is a
conventional algebraic meaning implied by this symbol. As described in Baker (1991), the following
properties should remain true for the equality operator:

- reflexive: a = a

- symmetric: a = b ==> b = a

- transitive: a = b and b = c ==> a = c

5.8 USING EXCEPTIONS
Ada exceptions are a reliability-enhancing language feature designed to help specify program behavior in the
presence of errors or unexpected events. Exceptions are not intended to provide a general purpose control
construct. Further, liberal use of exceptions should not be considered sufficient for providing full software
fault tolerance (Melliar-Smith and Randall 1987).

This section addresses the issues of how and when to avoid raising exceptions, how and where to handle
them, and whether to propagate them. Information on how to use exceptions as part of the interface to a unit

PROGRAMMING PRACTICES 81

include what exceptions to declare and raise and under what conditions to raise them. Other issues are
addressed in Guidelines 4.3 and 7.5.

5.8.1 Handling Versus Avoiding Exceptions
guideline

"* Avoid causing exceptions to be raised when it is easy and efficient to do so.

"* Provide handlers for exceptions which cannot be avoided.

"* Use exception handlers to enhance readability by separating fault handling from normal execution.
"* Do not use exceptions and exception handlers as goto statements.

rationale

In many cases, it is possible to detect easily and efficiently that an operation you are about to perform
would raise an exception. In such a case, it is a good idea to check rather than allowing the exception to
be raised and handling it with an exception handler. For example, check each pointer for NULL when
traversing a linked list of records connected by pointers. Also, test an integer for zero before dividing by
it, and call an interrogative function Stack IsEmpty before invoking the Pop procedure of a stack
package. Such tests are appropriate when they can be performed easily and efficiently, as a natural part
of the algorithm being implemented.

However, error detection in advance is not always so simple. There are cases where such a test is too
expensive or too unreliable. In such cases, it is better to attempt the operation within the scope of an
exception handler so that the exception is handled if it is raised. For example, in the case of a linked list
implementation of a list, it is very inefficient to call a function EntryExists before each call to the
procedure ModifyEntry simply to avoid raising the exception EntryNot Found. It takes as much time to
search the list to avoid the exception as it takes to search the list to perform the update. Similarly, it is
much easier to attempt a division by a real number within the scope of an exception handler to handle
numeric overflow than to test in advance whether the dividend is too large or the divisor too small for the
quotient to be representable on the machine.

In concurrent situations, tests done in advance can also be unreliable. For example, if you want to
modify an existing file on a multi-user system, it is safer to attempt to do so within the scope of an
exception handler than to test in advance whether the file exists, whether it is protected, whether there is
room in the file system for the file to be enlarged, etc. Even if you tested for all possible errors
conditions, there is no guarantee that nothing would change after the test and before the modific,:,on
operation. You still need the exception handlers, so the advance testing serves no purpose.

Whenever such a case does not apply, normal and predictable events should be handled by the code
without the abnormal transfer of control represented by an exception. When fault handling and only
fault handling code is included in exception handlers, the separation makes the code easier to read. The
reader can skip all the exception handlers and still understand the normal flow of control of the code.
For this reason, exceptions should never be raised and handled within the same unit, as a form of a goto
statement to exit from a loop, if, case, or block statement.

5.8.2 Handlers for others

guideline

"* Use caution when programming handlers for others.

"* Provide a handler for others in suitable frames to protect against unexpected exceptions being
propagated without bound, especially in safety critical systems.

"* Use others only to catch exceptions you cannot enumerate explicitly, preferably only to flag a
potential abort.

"* Avoid using others during development.

rationale

Providing a handler for others allows you to follow the other guidelines in this section. It affords a place
to catch and convert truly unexpected exceptions that were not caught by the explicit handlers. While it

82 Ada QUALITY AND STYLE

may be possible to provide "fire walls" against unexpected exceptions being propagated without
providing handlers in every block, you can convert the unexpected exceptions as soon as they arise. The
others handler cannot discriminate between different exceptions, and, as a result, any such handler
must treat the exception as a disaster. Even such a disaster can still be converted into a user-defined
exception at that point. Since a handler for others catches any exception not otherwise handled
explicitly, one placed in the frame of a task or of the main subprogram affords the opportunity to
perform final clean-up and to shut down cleanly.

Programming a handler for others requires caution because it cannot discriminate either which
exception was actually raised or precisely where it was raised. Thus, the handler cannot make any
assumptions about what can be or even what needs to be "fixed."

The use of handlers for others during development, when exception occurrences can be expected to be
frequent, can hinder debugging. It is much more informative to the developer to see a traceback with the
actual exception listed than the converted exception. Furthermore, many tracebacks do not list the
point where the original exception was raised if it was caught by a handler.

note

The arguments in the preceding paragraph apply only to development time, when traceback listings are
useful. They are not useful to users and can be dangerous. The handler should be iincluded in comment
form at the outset of development and the double dash removed before delivery.

5.8.3 Propagation

guideline

"* Handle all exceptions, both user and predefined.

"* For every exception that might be raised, provide a handler in suitable frames to protect against
undesired propagation outside the abstraction.

rationale

The statement that "it can never happen" is not an acceptable programming approach. You must
assume it can happen and be in control when it does. You should provide defensive code routines for the
"cannot get here" conditions.

Some existing advice calls for catching and propagating any exception to the calling unit. This advice can
stop a program. You should catch the exception and propagate it, or a substitute, only if your handler is
at the wrong abstraction level to effect recovery. Effecting recovery can be difficult, but the alternative is
a program that does not meet its specification.

Making an explicit request for termination implies that your code is in control of the situation and has
determined that to be the only safe course of action. Being in control affords opportunities to shut down
in a controlled manner (clean up loose ends, close files, release surfaces to manual control, sound
alarms), and implies that all available programmed attempts at recovery have been made.

5.8.4 Localizing the Cause of an Exception

guideline

"* Do not rely on being able to identify the fault raising predefined or implementation-defined
exceptions.

"* Use blocks to associate localized sections of code with their own exception handlers.

example

See Guideline 5.6.9.

rationale

It is very difficult to determine in an exception handler exactly which statement and which operation
within that statement raised an exception, particularly the predefined and implementation-defined
exceptions. The predefined and implementation-defined exceptions are candidates for conversion and

PROGRAMMING PRACTICES 83

propagation to higher abstraction levels for handling there. User-defined exceptions, being more closely
associated with the application, are better candidates for recovery within handlers.

User-defined exceptions can also be difficult to localize. Associating handlers with small blocks of code
helps to narrow the possibilities, making it easier to program recovery actions. The placement of
handlers in small blocks within a subprogram or task body also allows resumption of the subprogram or
task after the recovery actions. If you do not handle exceptions within blocks, the only action available
to the handlers is to shut down the task or subprogram as prescribed in Guideline 5.8.3.

note

The optimal size for the sections of code you choose to protect by a block and its exception handlers is
very application-dependent. Too small a granularity forces you to expend much more effort in
programming for abnormal actions than for the normal algorithm. Too large a granularity reintroduces
the problems of determining what went wrong and of resuming normal flow.

5.9 ERRONEOUS EXECUTION
An Ada program is erroneous when it violates or extends the rules of the language governing program
behavior. Neither compilers nor run-time environments are able to detect erroneous behavior in all
circumstances and contexts. As stated in Section 1.6 of Department of Defense (1983), "The effects of
erroneous execution are unpredictable." If the compiler does detect an instance of an erroneous program,
its options are to indicate a compile time error, to insert the code to raise Program_Error, possibly to write a
message to that effect, or to do nothing at all.

Erroneousness is not a concept unique to Ada. The guidelines below describe or explain the specific
instances of erroneousness defined in the Ada Language Reference Manual. Although Incorrect Order
Dependencies is not, strictly speaking, a case of erroneous execution, the rationale for avoiding such
dependencies is the same. Consequently, the guideline is included in this section.

5.9.1 Unchecked Conversion
guideline

* Use UncheckedConversion only with the utmost care (Department of Defense 1983, §13.10.2).

"* Ensure the value resulting from Uncheckedconversion is in range.

"* Isolate the use of Unchecked-Conversion in package bodies.

example

The following example may run without exception, depending on the implementation:

with Uncheckedconversion;

with Text_10;

procedure Test is

type Color is (Red, Yellow, Blue);

function IntegerTo color is
n.w Uncheckedconversion (Source => Integer,

Target => color);

A Color : color;

List : array (color) of Boolean;

Data : Boolean;

begin Test

A color := IntegerTo Color(15);
Data := List(A_Color);
TextIO.PutLine(color'Image(AColor));

end Test;
S...

84 Ada QUALITY AND STYLE

rationale

An unchecked conversion is a bit-for-bit copy without regard to the meanings attached to those bits and
bit positions by either the source or the destination type. The source bit pattern can easily he
meaningless in the context of the destination type. Unchecked conversions can create values that violate
type constraints on subsequent operations. Unchecked conversion of objects mismatched in size has
implementation-dependent results.

5.9.2 Unchecked Deallocation

guideline

0 Isolate the use of uncheckedDeallocation in package bodies.

rationale

Most of the reasons for using UncheckedDeallocation with caution have been given in Guideline 5.4.3.
When this feature is used, there is no checking that there is only one access path to the storage being
deallocated. Thus, any other access paths are not made null. Depending on such a check is erroneous

5.9.3 Dependence on Parameter Passing Mechanism
guideline

• Do not write code whose correct execution depends on the particular parameter passing mechanism
used by an implementation (Department of Defense 1983 and Cohen 1986).

example

The output of this program depends on the particular parameter passing mechanism that wa" used-

with Text_1O;

procedure Outer is

type coordinates is
record

X Integer := 0;
Y Integer 0;

end record;

OuterPoint : Coordinates;

package Integer IO is
new TextIO.integer_10 (Num => Integer);

procedure Inner (Inner_Point : in out Coordinates) is
begin

InnerPoint.X := 5;

-- The following line causes the output of the program to
-- depend on the parameter passing mechanism.
Integer_10. Put (Outer_Point.X);

end Inner;

begin -- Outer
Integer_10. Put (OuterPoint. X)
Inner (OuterPoint);
Integer_10.Put(Outer Point.X)

end Outer;

If the parameter passing mechanism is by copy, the results on the standard output file are:
005

If the parameter passing mechanism is by reference, the results are:
055

PROGRAMMING PRACTICES 85

rationale
The language definition specifies that a parameter whose type is an array, record, or task type can be
passed by copy or reference. It is erroneous to assume that either mechanism is used in a particular case.

exceptions

Frequently, when interfacing Ada to foreign code, dependence on parameter passing mechanisms used
by a particular implementation is unavoidable. In this case, isolate the calls to the foreign code in an
interface package that exports operations that do not depend on the parameter-passing mechanism.

5.9.4 Multiple Address Clauses
guideline

Use address clauses to map variables and entries to the hardware device or memory, not to model
the FORTRAN "equivalence" feature.

example
SingleAddress : constant ...

Interrupt_VectorTable : Hardware_Array;
for Interrupt_VectorTable use at SingleAddress;

rationale

The result of specifying a single address for multiple objects or program units is undefined, as is
specifying multiple addresses for a single object or program unit. Specifying multiple address clauses for
an interrupt entry is also undefined. It does not necessarily overlay objects or program units, or associate
a single entry with more than one interrupt.

5.9.5 Suppression of Exception Check
guideline

* Do not suppress exception check- during development.

* Minimize suppression of exception checks during operation.

* If necessary, introduce blocks that encompass the smallest range of statements that can safely have
exception checking removed.

rationale

If you disable exception checks and program execution results in a condition in which an exception
would otherwise occur, the program execution is erroneous. The results are unpredictable. Further, you
must still be prepared to deal with the suppressed exceptions if they are raised in and propagated from
the bodies of subprograms, tasks, and packages you call.

By minimizing the code which has exception checking removed, you increase the reliability of the
program. There is a rule of thumb which suggests that 20 percent of the code is responsible for 80
percent of the CPU time. So once you have identified the code that actually needs exception checking
removed, it is wise to isolate it in a block (with appropriate comments) and leave the surrounding code
with exception checking in effect.

5.9.6 Initialization
guideline

"• Initialize all objects prior to use.

"* Ensure elaboration of an entity before using it.

"* Use function calls in declarations cautiously.

example

package Robot_controller is

86 Ada QUALITY AND STYLE

function Sense return Position;

end RobotController;

package body Robot Controller is

Coal : Position := Sense; -- This raises ProgramError

function Sense return Position is
begin

end Sense;

begin -- RobotController
Coal Sense; -- The function has been elaborated.

end Robot_Controller;

rationale

Ada does not define an initial default value for objects of any ty-pe other than access types. Usin• the
value of an object before it has been assigned a value causes unpredictable behavior, possibly raising an
exception. Objects can be initialized implicitly by declaration or explicitly by assignment statements.
Initialization at the point of declaration is safest as well as easiest for maintainers. You can also specify
default values for components of records as part of the type declarations for those records.

Ensuring initialization does not imply initialization at the declaration. In the example above, Goa! must
be initialized via a function call. This cannot occur at the declaration, because the function sense has not
yet been elaborated, but can occur later as part of the sequence of statements of the body of the
enclosing package.

An unelaborated function called within a declaration (initialization) raises the exception,
ProgramError, that must be handled outside of the unit containing the declarations. This is true for any
exception the function raises even if it has been elaborated.

If an exception is raised by a function call in a declaration, it is not handled in that immediate scope. It is
raised to the enclosing scope. This can be controlled by nesting blocks.

note

Sometimes, elaboration order can be dictated with pragma Elaborate. Pragma Elaborate only applies to
library units.

5.9.7 Direct_10 and SequentialIO
guideline

• Ensure that values obtained from Directlo and SequentialIo are in range.

rationale

As with unchecked_Conversion, there is no check on the value obtained from the read operations found
in DirectIO and SequentialIo. See Guideline 5.9.1 for an example.

note

It is sometimes difficult to force an optimizing compiler to perform the necessary checks on a value that
the compiler believes is in range. Most compiler vendors allow the option of suppressing optimization
which can be helpful.

PROGRAMMING PRACTICES 87

5.9.8 Incorrect Order Dependencies

guideline

* Avoid depending on the order in which certain constructs in Ada are evaluated (see Department of
Defense 1983, 1-17).

rationale

As stated in the Ada Language Reference Manual, an incorrect order dependency may arise whenever
". . different parts of a given construct are to be executed in some order that is not defined by the
language. . . . The construct is incorrect if execution of these parts in a different order would have a
different effect." (Department of Defense 1983, § 1.6).

While an incorrect order dependency may not adversely affect the program on a certain
implementation, the code might not execute correctly when it is ported. Avoid incorrect order
dependencies, but also recognize that even an unintentional error of this kind could prohibit portability.

5. 10 SUMMARY

optional parts of the syntax

"* Associate names with loops when they are nested.

"* Associate names with blocks when they are nested.

"* Use loop names on all exit statements from nested loops.

"* Include the simple name at the end of a package specificition and body.

* Include the simple name at the end of a task specification and body.

"• Include the simple name at the end o1 an accept statement.

"* Include the designator at the end of i subprogram body.

parameter lists
"• Name formal parameters descriptively to reduce the need for comments.

"• Use named parameter association in calls of infrequently used subprograms or entries with many
formal parameters.

"* Use named association when instantiating generics.

"* Use named association for clarification when the actual parameter is any literal or expression.

"• Use named association when supplying a nondefault value to an optional parameter.

"* Provide default parameters to allow for occasional, special use of widelv used subprograms or
entries.

"* Place default parameters at the end of the formal parameter list.

"* Consider providing default values to new parameters added to an existing subprogram.

* Show the mode indication of all procedure and entry parameters.

* Use in out only when the parameter is both read from and updated.

types

"* Use existin, types as building blocks by deriving new types from them.

"* Use range constraints on subtypes.

"* Define new types, especially derived types, to include the largest set of possible values. including
boundary values.

"* Constrain the ranges of derived types with subtypes, excluding boundary •alue,.

"* Avoid anonymous types.

"* Use anonymous types for array variables when no suitable type exists and the arrak "ill not be
referenced as a whole.

88 Ada QUALITY AND STYLE

"* Use limited private types in preference to private types.
"* Use private types in preference to nonprivate types.

"* Explicitly export needed operations rather than easing restrictions.

data structures

"* Use records to group heterogeneous but related data.
"* Consider records to map to 1/0 device data.

"* Record structures should not always be flat. Factor out common parts.

"* For a large record structure, group related components into smaller subrecords.
"* For nested records, pick element names that read well when inner elements are referenced.

"• Differentiate between static and dynamic data. Use dynamically allocated objects with caution.

"* Use dynamically allocated data structures only when it is necessary to create and destroy them
dynamically or to be able to reference them by different names.

"* Do not drop pointers to undeallocated objects.

"* Do not leave dangling references to deallocated objects.

• Initialize all access variables and components within a record.

* Do not rely on memory deallocation.

* Deallocate explicitly.

* Use length clauses to specify total allocation size.

• Provide handlers for StorageError.

expressions

• Use 'First or 'Last instead of numeric literals to represent the first or last values of a rainge.
"* Use the type or subtype name of the range instead of 'First .. -Last.

"* Use array attributes 'First, 'Last, or 'Length instead of numeric literals for accessing arrays.
"* Use the -Range of the array instead of the name of the index subtype to express a range.
"* Use 'Range instead of 'first .. 'Last tO express a range.

"* Use parentheses to specify the order of subexpression evaluation to clarify expressions.

"* Use parentheses to specify the order of evaluation for subexpressions whose correctness depends on
left to right evaluation.

"• Avoid names and constructs that rely on the use of negatives.

"* Choose names of flags so they represent states that can be used in positive form.

"* Use short-circuit forms of the logical operators.

"* Use <= and >= in relational expressions with real operands instead of

statements

"• Minimize the depth of nested expressions.

"* Minimize the depth of nested control structures.

"* Try simplification heuristics.

"• Use slices rather than a loop to copy part of an array.

* Never use an others choice in a case statement.

* Do not use ranges of enumeration literals in case statements.

• Use for loops whenever possible.

* Use while loops when the number of iterations cannot be calculated before entering the loop, but a
simple continuation condition can be applied at the top of the loop.

PROGRAMMINGJ PRACTICELS r5T

* Use plain loops with exit statements for more complex situations.

* Avoid exit statements in while and for loops.

* Minimize the number of ways to exit a loop.

* Use exit statements to enhance the readability of loop termination code.

* Use exit when ... rather than if ... then exit whenever possible.

* Review exit statement placement.

"* Consider specifying bounds on loops.

"* Consider specifying bounds on recursion.

"* Do not use goto statements.

"* Minimize the number of returns from a subprogram.

* Highlight returns with comments or white space to keep them from being lost in other code.

• Use blocks to localize the scope of declarations.

* Use blocks to perform local renaming.

* Use blocks to define local exception handlers.

* Use an aggregate instead of a sequence of assignments to assign values to all components of a
record.

* Use an aggregate instead of a temporary variable when building a record to pass as an actual
parameter.

• Use positional association only when there is a conventional ordering of the arguments.

visibility

"• Minimize using the use clause.

"* Consider using the use clause in the following situations:
- Infix operators are needed

- Standard packages are needed and no ambiguous references are introduced
- References to enumeration literals are needed

"• Consider the renames clause to avoid the use clause.

"• Localize the effect of all use clauses.

"* Rename a long, fully qualified name to reduce the complexity if it becomes unwieldy (Guideline
3.1.4).

"* Rename declarations for visibility purposes rather than using the use clause, especially for infix
operators (Guideline 5.7.1).

* Rename pans when interfacing to reusable components originally written with nondescriptive or
inapplicable nomenclature.

"* Use a project-wide standard list of abbreviations to rename common packages.

"* Limit overloading to widely used subprograms that perform similar actions on arguments of different
types.

"* Preserve the conventional meaning of overloaded operators.

"* Use "+" to identify adding, joining, increasing, and enhancing kinds of functions.

"• Use "-" to identify subtraction, separation, decreasing, and depleting kinds of functions.

"• Do not depend on the definition of equality provided by private types.

"• When overloading the equality operator for limited private types, maintain the properties of an
algebraic equivalence relation.

using exceptions

* Avoid causing exceptions to be raised when it is easy and efficient to do so.

90 Ada QUALITY AND STYLE

"* Provide handlers for exceptions which cannot be avoided.

"• Use exception handlers to enhance readability by separating fault handling from normal execution.

* Do not use exceptions and exception handlers as goto statements.

* Use caution when programming handlers for others.

* Provide a handler for others in suitable frames to protect against unexpected exceptions being
propagated without bound, especially in safety critical systems.

"* Use others only to catch exceptions you cannot enumerate explicitly, preferably only to flag a
potential abort.

"• Avoid using others during development.

"* Handle all exceptions, both user and predefined.

"* For every exception that might be raised, provide a handler in suitable frames to protect against
undesired propagation outside the abstraction.

"* Do not rely on being able to identify the fault raising predefined or implementation-defined
exceptions.

"* Use blocks to associate localized sections of code with their own exception handlers.

erroneous execution

"• Use Unchecked-Conversion only witi the utmost care.
"* Ensure the value resulting from UncieckedConversion is in range.

"• Isolate the use of UncheckeDConversion in package bodies.

"* Isolate the use of UncheckedDeallocation in package bodies.

"• Do not write code whose correct execution depends on the particular parameter passing mechanism
used by an implementation.

"• Use address clauses to map variables and entries to the hardware device or memory, not to model
the FORTRAN "equivalence" feature.

"* Do not suppress exception checks during development.

"* Minimize suppression of exception checks during operation.

"* If necessary, introduce blocks that encompass the smallest range of statements that can safely have
exception checking removed.

"* Initialize all objects prior to use.

"* Ensure elaboration of an entity before using it.

"* Use function calls in declarations cautiously.

* Ensure that values obtained from Direct_I0 and sequentialI0 are in range.

* Avoid depending on the order in which certain constructs in Ada are evaluated.

CHAPTER 6
Concurrency

Concurrency exists as either apparent concurrency or real concurrency. In a single processor environment
apparent concurrency is the result of interleaved execution of concurrent dctivities. In a multi-processor
environment real concurrency is the result of overlapped execution of concurrent activities.

Concurrent programming is more difficult and error prone than sequential programming. The concurrent
programming features of Ada are designed to make it easier to write and maintain concurrent programs
which behave consistently and predictably, and avoid such problems as deadlock and starvation. The
language features themselves cannot guarantee that programs have these desirable properties. They must be
used with discipline and care, a process supported by the guidelines in this chapter.

The correct usage of Ada concurrency features results in reliable, reusable, and portable software. For
example, using tasks to model concurrent activitieb and using the rendezvrus for the required
synchronization between cooperating concurrent tasks. Misuse of language features results in software that is
unverifiable and difficult to reuse or port. For example, using task priorities or delays to manage
synchronization is not portable. It is also important that a reusable component not make assumptions about
the order or speed of task execution (i.e., about the compilers tasking implementation).

Avoid assuming that the rules of good sequential program design can be applied, by analogy, to concurrent
programs. For example, while multiple returns from subprograms should be discouraged (Guideline 5.6.8),
multiple task exits or termination points are often necessary and desirable.

6.1 TASKING
Many problems map naturally to a concurrent programming solution. By understanding and correctly using
the Ada language tasking features, you can produce solutions that are independent of target
implementation. Tasks provide a means, within the Ada language, of expressing concurrent asynchronous
threads of control and relieving programmers from the problem of explicitly controlling multiple concurrent
activities.

Tasks cooperate to perform the required activities of the software. Synchronization is required between
individual tasks. The Ada rendezvous provides a powerful mechanism for this synchronization.

6.1.1 Tasks
guideline

"* Use tasks to model asynchronous entities within the problem domain.

"* Use tasks to control or synchronize access to tasks or devices.

"* Use tasks to define concurrent algorithms.

91

92 Ada QUALITY AND STYLE

example

Asynchronous entities are the naturally concurrent objects within the problem domain. These tend to be
objects in the problem space that have state, such as elevators in an elevator control system or satellites
in a global positioning system. The following is an example for an elevator control system:

package ElevatorObjects is

type Elevator_States is (Moving, Idle, Stopped, At_Floor);
type UpDown is (Up, Down);

task type Elevators is

entry Initialize;
entry Close-Door;
entry Open Door;
entry Stop;
entry Idle;
entry Start (Direction : in UpDown);
entry Current State (MyState : out Elevator States;

Curren t _Location : out Float);

end Elevators;

end Elevator_Objects;

A task that manages updates from multiple concurrent user tasks to a graphic display is an example of a
control and synchronization task.

Multiple tasks that implement the decomposition of a large matrix multiplication algorithm is an
example of an opportunity for real concurrency in a multi-processor target environment. In a single
processor target environment this approach may not be justified.

A task that updates a radar display every 30 milliseconds is an example of a cyclic activity supported by a
task.

A task that detects an over-temperature condition in a nuclear reactor and performs an emergency
shutdown of the systems is an example of a task to support a high priority activity.

rationale

These guidelines reflect the intended uses of tasks. They all revolve around the fact that a task has its
own thread of control separate from the main subprogram. The conceptual model for a task is a separate
program with its own virtual processor. This provides the opportunity to model entities from the problem
domain in terms more closely resembling those entities, and the opportunity to handle physical devices
as a separate concern from the main algorithm of the application. Tasks also allow naturally concurrent
activities which can be mapped to multiple processors when available.

Resources shared between multiple tasks, such as devices and abstract data structures, require control
and synchronization since their operations are not atomic. Drawing a circle on a display may require that
many low level operations be performed without interruption by another task. A display manager would
ensure that no other task accesses the display until all these operations are complete.

6.1.2 Anonymous Task Types
guideline

0 Use anonymous task types for single instances.

example

The example below illustrates the syntactic differences between the kinds of tasks discussed here.
Buffer is static and has a name, but its type is anonymous. Because it is declared explicitly, the task type
Buffer-Manager is not anonymous. Channel is static and has a name, and its type is not anonymous. Like
all dynamic objects, EncryptedPacketQueue.all is essentially anonymous, but its type is not.

CONCURRENCY 93

task Buffer;
task type Buffer-Manager:
type ReplaceableBuffer is access BufferManager;

EncryptedPacketQueue Replaceable Buffer;

Channel Buffer-Manager;

EncryptedPacketQueue new BufferManager;

rationale
The use of named tasks of anonymous type avoids a proliferation of task types that are only used once,
and the practice communicates to maintainers that there are no other task objects of that type. If the
need arises later to have additional tasks of the same type, then the work required to convert a named
task to a task type is minimal.

The consistent and logical use of task types, when necessary, contributes to understandabihty. Identical
tasks can be derived from a common task type. Dynamically allocated task structures are necessary
when you must create and destroy tasks dynamically or when you must reference them by different
names.

note

Though changing the task from an anonymous type to a task type is trivial, structural changes to the
software architecture may not be trivial. Introducztion of multiple tasks of the task type may require the
scope of the task type to change and may change the behavior of the network of synchronizing tasks.

6.1.3 Dynamic Tasks
guideline

"* Justify the use of dynamically allocated task objects.

"• Avoid disassociating a dynamic task from all names.

example

The approach used in the following example below is not recommended. The example shows why
caution is required with dynamically allocated task objects. It illustrates how a dynamic task can be
disassociated from its name.

task type RadarTrack;
type RadarTrackPointer is access RadarTrack;

CurrentTrack : RadarTrackPointer;

task body Radar-Track is
begin

loop
-- update tracking information

-- exit when out of range
delay 1.0;

end loop;

end RadarTrack;

loop

-- Unless some code deals with non-null values of Current Track.
-- (such as an array of existing tasks)
-- this assignment leaves the existing Radar-Track task running with
-- no way to signal it to abort or to instruct the system to
-- reclaim its resources.
Current-Track := new RadarTrack;

94 Ada QUALITY AND STYLE

end loop;

rationale

A dynamically allocated task object is a task object created by the execution of an allocator. Allocators
can be used to avoid limiting the number of tasks. Memory and timing requirements are positively or
negatively affected by the decision to use dynamic tasks. Both creation and deletion of dynamic tasks
and scheduling of dormant static tasks adversely affect performance. Dormant static tasks incur memory
overhead that can be avoided using dynamic tasks. Creation and deletion of dynamic tasks is typically
more expensive than scheduling overhead in terms of CPU time.

Allocated task objects referenced by access variables allow you to generate aliases; multiple references
to the same object. Anomalous behavior can arise when you reference an aborted task by another
name.

% dynamically allocated task that is not associated with a n.ame (a "dropped pointer") cannot be
referenced for the purpose of making entry calls, nor can it be the direct target of an abort statement
(see Guideline 5.4.3).

6.1.4 Priorities
guideline

"* Do not rely on pragma Priority to prioritize the service of entries.

"* Arrange task bodies in order of their priorities (if possible).

example

For example, let the tasks have the following priorities:

task TI ... pragma Priority (High) ... Server.Operation ...
task T2 ... pragma Priority (Medium) ... Server.Operation ...
task Server ... accept Operation ...

At some point in its execution, TI is blocked. Otherwise, T2 and server may never execute. If Ti is
blocked, it is possible for T2 to reach its call to server's entry (Operation) before T1. Suppose this has
happened and that Ti now makes its entry call before server has a chance to accept T2'S call.

This is the timeline of events so far:
Ti blocks
T2 calls Server.Operation
TI unblocks
T1 calls Server.Operation

Does Server accept the call from Ti or from T2?

Some people might expect that, due to its higher priority, Ti's call would be accepted by server before
that of T2. However, entry calls are queued in first-in-first-out (FIFO) order and not queued in order of
priority. Therefore, the synchronization between Ti and server is not affected by Ti's priority. As a
result, the call from T2 is accepted first. This is a form of priority inversion.

A solution might be to provide an entry for a High priority user and an entry for a Medium priority user.

task Server is
entry OperationHighPriority;
entry OperationMediumPriority;

end Server;

task body Server is
begin

loop
select

accept OperationHighPriority do
Operation;

end Operation High_Priority;
else -- accept any priority

CONCURRENCY 95

select
accept OperationHighPriority do

Operation;
end OperationHighPriority;

or
accept OperationMediumPriority do

Operation;
end OperationMedium_Priority;

or
terminate;

end select;
end select;

end loop;

end Server;

However, in this approach T1 still waits for one execution of Operation when T2 has already gained
control of the task server. In addition, the approach increases the communication complexity (see
Guideline 6.2.6).

rationale

The pragma Priority allows relative priorities to be placed on tasks to accomplish scheduling. Precision
becomes a critical issue with hard-deadline scheduling. However, there are certain problems associated
with using priorities that warrant caution.

Priority inversion occurs when lower priority tasks are given service while higher priority tasks remain
blocked. In the above example, this occurred because entry queues are serviced in FIFO order, not by
priority. There is another situation referred to as a race condition. A program like the one in the first
example might often behave as expected as long as Ti calls server.operation only when T2 is not
already using server.Operation or waiting. You cannot rely on Ti always winning the race, since that
behavior would be due more to fate than to the programmed priorities. Race conditions change when
either adding code to an unrelated task or porting this code to a new target. Task priorities are not a
means of achieving mutual exclusion.

Arranging task bodies in order of priority will elaborate the higher priority tasks first.

exceptions

When there are dependencies between tasks, the dependencies will influence the order in which the
tasks should be elaborated. In these cases, the dependencies in conjunction with the task priorities
should be used to order the task bodies.

note

Work is being done to minimize these problems, including the introduction of a scheduling algorithm
known as the priority ceiling protocol (Goodenough and Sha 1988). The priority ceiling protocol
reduces the blocking time that causes priority inversion to only one critical region (defined by the entries
in a task). The protocol also eliminates deadlock unless a task recursively tries to access a critical region.
This protocol is based on priority inheritance and thus deviates from the standard Ada tasking
paradigm.

Priorities are used to control when tasks run relative to one another. When both tasks are not blocked
waiting at an entry, the highest priority task is given precedence. However, the most critical tasks in an
application do not always have the highest priority. For example, support tasks or tasks with small
periods may have higher priorities, because they need to run frequently.

6.1.5 Delay Statements
guideline

* Do not depend on a particular delay being achievable (Nissen and Wallis 1984).

"* Do not use a busy waiting loop instead of a delay.

"* Design to limit polling to those cases where absolutely necessary.

96 Ada QUALITY AND STYLE

0 Do not use knowledge of the execution pattern of tasks to achieve timing requirements.

example

The phase of a periodic task is the fraction of a complete cycle elapsed as measured from a specified
reference point. In the following example an inaccurate delay causes the phase of the periodic task to
drift over time (i.e., the task starts later and later in the cycle):

Periodic:
loop

delay Interval;

end loop Periodic;

The following example shows how to compensate for the inaccuracy of the delay statement. This
approach works well when the periodic requirement can be satisfied with an average period. Periodic
tasks based on an inaccurate delay can drift from their phase. Prevention of this drift can be achieved by
calculating the next time-to-occur based on the actual time of the current execution. The following
example illustrates this tactic:

No-Drift:
declare

use Calendar;

-- Interval is a global constant of type Duration
NextTime : Calendar.Time := Calendar.clock + Interval;

begin -- No Drift
Stable Periodic:

loop
delay NextTime - clock;

Next Time := Next Time + Interval;
end loop StablePeriodic;

end NoDrift;

rationale

The Ada language definition only guarantees that the delay time is a minimum. The meaning of a delay
statement is that the task is not scneauied for execution before the interval has expired. in other words,
a task becomes eligible to resume execution as soon as the amount of time has passed. However, there is
no guarantee of when (or if) it is scheduled after that time.

A busy wait can interfere with processing by other tasks. It can consume the very processor resource
necessary for completion of the activity for which it is waiting. Even a loop with a delay can have the
impact of busy waiting if the planned wait is significantly longer then the delay interval. If a task has
nothing to do, it should be blocked at an accept or select statement.

Using knowledge of the execution pattern of tasks to achieve timing requirements is nonportable. Ada
does not specify the underlying scheduling algorithm.

6.2 COMMUNICATION
The need for tasks to communicate gives rise to most of the problems that make concurrent programming so
difficult. Used properly, Ada's intertask communication features can improve the reliability of concurrent
programs; used thoughtlessly, they can introduce subtle errors that can be difficult to detect and correct.

6.2.1 Efficient Task Communications

guideline

* Minimize the work performed during a rendezvous.

* Minimize the work performed in the selective wait loop of a task.

example

In the following example, the statements in the accept body are verformed as part of the execution "nf
both the caller task and the task server which contains operation and operation2. The statements

CONCURRENCY 97

after the accept body are executed before server can accept additional calls to operation or
Operat ion2.

loop
select

accept Operation do

-- These statements are executed during rendezvous.
-- Both caller and server are blocked during this time.

end Operation;

-- 'These statements are not executed during rendezvous.
-- Iheir execution delays getting back to the accept and
-- may be a candidate for another task.

or
accept Operation_2 do

-- These statements are executed during rendezvous.
-- Both caller and server are blocked during this time.

end Operation_2;

end select;
-- These statements are also not executed during rendezvous.
-- Their execution delays getting back to the accept and may
-- be a candidate for another task,

end loop;

rationale

Only work that needs to be performed during a rendezvous, such as saving or generating parameters.
should be allowed in the accept bodies to minimize the time required to rendezvous.

When work is removed from the accept body and placed later in the selective wait loop, the additional
work may still suspend the caller task. If the caller task calls entry operation again before the server task
completes its additional work, the caller is delayed until the server completes the additional work. It the
potential delay is unacceptable and the additional work does not need to be completed before the next
service of the ca!l:lr task, the additional work may form the basis of a new task that will not block the
caller task.

note

In some cases, additional functions may be added to a task. For example, a task controlling a
communication device may be responsible for a periodic f'Ec-tion to ensure that the device is operating
correctly. This type of addition should be done with care realizing that the response time of the task is
impacted (see rationale).

exceptions

Task communication overhead must be balanced with the associated blocking. Each time a new task is
introduced, there is a timing impact caused by scheduling and synchronization with the new task. Be
careful when introducing tasks to reduce blocking. The reduction in blocking time will cause increased
task scheduling and synchronization overhead and software architecture complexity.

6.2.2 Defensive Task Communication

guideline

"• Provide a handler for exception ProgramError whenever you cannot avoid a selective wait
statement whose alternates can all be closed (Honeywell 1986).

"* Make systematic use of handlers for TaskingError.

"• Be prepared to handle exceptions during a rendezvous.

98 Ada QUALITY ANT -, YLE

example

This bh.zk allows recovery from exceptions raised while attempting to communicate a command to
an(, I,-i task.

Accelerate:
begin

Throttle. Increase(Step);

except ion
when TaskingError => ...
when constraintError I

Numeric-Error => ...
when ThrottleTooWide => ...

end Accelerate:

In this select statement, if all the guards happen to be closed, the program can continue by executing the
else part. There is no need for a handler for ProgramError. Other exceptions can still be raised while
evaluating the guards or attempting to communicate.

Guarded:
begin

select
when Condition-i =>

accept Entry_l:

or

when Condition_2 =>
accept Entry_2;

else -- all alternatives closed

end select;
exception

when ConstraintError I NumericError =>

end Guarded;

In this select statement, if all the guards happen to be closed, exception Program-Error will be raised.
Other exceptions can still be raised while evaluating the guards or attempting to communicate.

Guarded:
begin

select
when Condition_1 =>

accept Entry_1;

or
when Condition_2 =>

delay FractionOfASecond,
end select;

exception
when Program_Error =>
when Constraint Error I

NumericError =>
end Guarded;;

rationale

The exception ProgramError is raised if a selective wait statement (select statement containing accepts)
is reached, all of whose alternatives are closed (i.e., the guards evaluate to False and there are no
alternatives without guards), unless there is an else part. When all alternatives are closed, the task can
never again progress, so there is by definition an error in its programming. You must be prepared to
handle this error should it occur.

Since an else part cannot have a guard, it can never be closed off as an alternative action, thus its
presence prevents Program_Error. However, an else part, a delay alternative, and a terminate alternative
are all mutually exclusive, so you will not always be able to provide an else part. In these cases, you must
be prepared to handle Program Error.

CONCURRENCY 99

The exception Tasking_Error can be raised in the calling task whenever it attempts to communicate.
There are many situations permitting this. Few of them are preventable by the calling task.

If an exception is raised during a rendezvous and not handled in the accept statement, it is propagated to
both tasks and must be handled in two places. See Guideline 5.8.

note

There are other ways to prevent Program-Error at a selective wait. These involve leaving at least one
alternative unguarded, or proving that at least one guard will evaluate True under all circumstances. The
point her,_ is that you, or your successors, will make mistakes in trying to do this, so you should prepare
to handle tt., iaievitable exception.

6.2.3 Attributes 'Count, 'Callable and 'Terminated

guideline

* Do not depend on the values of the task attributes -callable or 'Terminated (Nissen and Wallis
1984).

"* Do not depend on attributes to avoid TaskingError on an entry call.

"• Do not depend on the value of the entry attribute 'Count.

example

In the following examples Intercept'Callable is a boolean indicating if a call can be made to the task
Intercept without raising the exception TaskingError. Launch'Count indicates the number of callers
currently waiting at entry Launch. Intercept 'Terminated is a boolean indicating if the task Intercept is in
terminated state.

This task is badly programmed because it relies upon the values of the 'count attributes not changing
between evaluating and acting upon them.

task body Intercept is

select
when Launch'Count > 0 and Recall'Count = 0 =>

accept Launch;

or
accept Recall;

end select;

end Intercept;

If the following code is preempted between evaluating the condition and initiating the call, the
assumption that the task is still callable may no longer be valid.

"if Intercept'callable then
Intercept .Recall;

end if;

rationale

Attributes 'callable, 'Terminated, and 'count are all subject to race conditions. Between the time you
reference an attribute and the time you take action the value of the attribute may change. Attributes
"callable and 'Terminated convey reliable information once they become False and True, respectively.
If 'Callable is False. you can expect the callable state to remain constant. If 'Terminated is True. you
can expect the task to remain terminated. Otherwise, 'Terminated and 'Callable can change between
the time your code tests them and the time it responds to the result.

The Ada Language Reference Manual (Department of Defense 1983) itself warns about the
asynchronous increase and decrease of the value of 'count. A task can be removed from an entry queue

100 Ada QUALITY AND STYLE

due to execution of an abort statement as well as expiration of a timed entry call. The use of this attribute
in guards of a selective wait statement may result in the opening of alternatives which should not be
opened under a changed value of 'count.

6.2.4 Shared Variables
guideline

* Use the rendezvous mechanism, not shared variables, to pass data between tasks.

"* Do not use shared variables as a task synchronization device.

"* Do not reference nonlocal variables in a guard.

example

This code will either print the same line more than once, fail to print some lines, or print garbled lines
(part of one line followed by part of another) nondeterministically.

task body RobotArmDriver is

Current-Command : RobotCommand;

begin -- RobotArm_Driver
loop

CurrentCommand := Command;
-- send to device

end loop;

end RobotArmDriver;

task body Stream-Server is
begin

loop

StreamRead(StreamFile, Command);

end loop;

end Stream-Server;

This code ensures that a missile cannot be fired unless the doors are open and that the missile cannot be
armed unless the doors are shut. In this case the requirement for arming may be derived from the
duration that the door may be open (i.e., arm first, open door, launch, close door).

DoorsOpen : Boolean := False;

task body Intercept is
begin

select
when DoorsOpen = True =>

accept Launch;

or
when DoorsOpen = False =>

accept Arm;

end select;

end Intercept;

task body Intercep. is

LocalDoorsOpen : Boolean := False;

CONCURRENCY 101

begin -- Intercept

select
when Local_DoorsOpen = True =>

accept Launch;

or
when Local_DoorsOpen = False =>

accept Arm;

or
accept Door Status

(DoorsOpen : in Boolean) do
Local DoorsOpen := Doors-Open;

end Door Status;
end select;

end Intercept;

rationale
There are many techniques for protecting and synchronizing data access. You must program most of
them yourself to use them. It is difficult to write a program that shares data correctly. If it is not done
correctly, the reliability of the program suffers. Ada provides the rendozvous to support synchronization
and communication of information between tasks. Data that you might be tempted to share can be put
into a task body with read and write entries to access it.

The first example above has a race condition requiring perfect interleaving of execution. This code can
be made more reliable by introducing a flag that is set by Spoolserver and reset by
Line PrinterDriver. An if (condition flag) then delay ... else would be added to each task loop
in order to ensure that the interleaving is satisfied. However, notice that this approach requires a delay
and the associated rescheduling. Presumably this rescheduling overhead is what is being avoided by not
using the rendezvous.

A guard is a conditional select alternative starting with a when (see 9.7.1 in Department of Defense
1983). The second example above also has a race condition requiring two different things. First, the
task that opens the doors must open the doors and update Doors.open before allowing the intercept task
to continue execution. Second, the run time system evaluation of the guard in the select statement
cannot occur until the Doors Open matches the next anticipated entry call. If the next call will be to ARM,
then you must make sure that Doors Open changes to False before the Intercept task reevaluates the
select statement. If the select statement is evaluated while Doors Open is True and Doors-Open is
subsequently set to False, the select will continue to wait on the Launch until a Launch is received. An
alternate approach is to use Local-DoorsOpen in the example. This guarantees that the guards will be
reevaluated upon a change in the value of Doors-Open.

exceptions

For some required synchronizations the rendezvous may not meet time constraints. Each case should be
analyzed in detail to justify the use of pragma shared, which presumably has less overhead than the
rendezvous. Be careful to correctly implement a data access synchronization technique. Without great
effort you might get it wrong. Pragma Shared can serve as an expedient against poor run time support
systems. Do not always use this as an excuse to avoid the rendezvous because implementations are
allowed to ignore pragma Shared (Nissen and Wallis 1984). When pragma Shared is implemented by
compilers, the implementation is not always uniform and can still lead to nonportable code. Pragma
Shared affects only those objects whose storage and retrieval are implemented as indivisible operations.
Also, pragma Shared can only be used for variables of scalar or access type.

note
As pointed out above, a guarantee of noninterference may be difficult with implementations that ignore
pragma Shared. If you must share data, share the absolute minimum amount necessary, and be
especially careful. As always, encapsulate the synchronization portions of code.

102 Ada QUALITY AND STYLE

The problem is with variables. Constants, such as tables fixed at compile time, may be safely shared
between tasks.

6.2.5 Tentative Rendezvous Constructs
guideline

"* Use caution with conditional entry calls.

"* Use caution with selective waits with else parts.

"* Do not depend upon a particular delay in timed entry calls.

"* Do not depend upon a particular delay in selective waits with delay alternatives.

example

The conditional entry call in the following code results in a race condition that may degenerate into a
busy waiting loop. The task CurrentPosition containing entry Request New-coordinates may never
execute if this task has a higher priority than currentPosition, because this task doesn't release the
processing resource.

loop

select
Current Position.Request_Newcoordinates(X, Y);
-- calculate target location based on new coordinates

else

-- calculate target location based on last locations

end select;

end loop;

The addition of a delay as shown may allow currentPosition tO execute until it reaches an accept for
Request New Coordinates.

loop

select
Current Position.Request NewCoordinates(X, Y);
-- calculate target location based on new coordinates

else
-- calculate target location based on last locations

delay Next Execute - Clock;
Next Execute := NextExecute + Period;

end select;

end loop;

The following selective wait with else again does not degenerate into a busy wait loop only because of the
addition of a delay statement.

loop
delay Next-Execute - clock;

select
accept GetNew_Message (Message : in String) do

-- copy message to parameters

end GetNewMessage;

CONCURRENCY 103

else -- Don't wait for rendezvous
-- perform built in test Functions

end select;

Next Execute := NextExecute + TaskPeriod;
end loop;

The following timed entry call may be considered an unacceptable implementation if lost
communications with the reactor for over 25 milliseconds results in a critical situation.

loop

select
Reactor. Status (OK);

or
delay 0.025;
-- lost communication for more that 25 milliseconds
EmergencyShutdown;

end select,;

-- process reactor status

end loop;

In the following "selective wait with delay" example, the accuracy of the coordinate calculation function
is bounded by time. For example, the required accuracy cannot be obtained unless Period is within + or
- 0.005 seconds. This period cannot be guaranteed because of the inaccuracy of the delay statement.

loop

select
accept RequestNewCoordinates (X out Integer;

Y out Integer) do
-- copy coordinates to parameters

end Request NewCoordinates;

or
delay Next_E.iecute - Calendar.Clock;

end select;

NextExecute := NextExecute + Period;
-- Read Sensors
-- execute coordinate transformations

end loop;

rationale

Use of these constructs always poses a risk of race conditions. Using them in loops, particularly with
poorly chosen task priorities, can have the effect of busy waiting.

These constructs are very much implementation dependent. For conditional entry calls and selective
waits with else parts, the Ada Language Reference Manual (Department of Defense 1983) does not
define "immediately." For timed entry calls and selective waits with delay alternatives, implementors
may have ideas of time that differ from each other and from your own. Like the delay statement, the
delay alternative on the select construct might wait longer than the time required (see Guideline 6.1.5).

6.2.6 Communication Complexity
guideline

* Minimize the number of accept and select statements per task.

* Minimize the number of accept statements per entry.

104 Ada QUALITY AND STYLE

example

Use
accept A;
if Mode 1 then

-- do one thing
else -- Mode 2

-- do something different
end if;

rather than
if Mode_1 then

accept A;
-- do one thing

else -- Mode_2
accept A;
-- do something different

end if;

rationale

This guideline reduces conceptual complexity. Only entries necessary to understand externally
observable task behavior should be introduced. If there are several different accept and select
statements that do not modify task behavior in a way important to the user of the task, there is
unnecessary complexity introduced by the proliferation of select/accept statements. Externally
observable behavior important to the task user includes task timing behavior, task rendezvous initiated
by the entry calls, prioritization of entries, or data updates (where data is shared between tasks).

6.3 TERMINATION
The ability of tasks to interact with each other using Ada's intertask communication features makes it
especially important to manage planned or unplanned (e.g., in response to a catastrophic exception
condition) termination in a disciplined way. To do otherwise can lead to a proliferation of undesired and
unpredictable side effects as a result of the termination of a single task.

6.3.1 Avoiding Termination

guideline

* Place an exception handler for a rendezvous within the main tasking loop.

example

In the following example an exception raised using the primary sensor is used to change Mode tO Degraded
still allowing execution of the system.

loop

Recognize DegradedMode:
begin

if Mode = Primary then

select
CurrentPosition_Primary.RequestNewCoordinates

(X. Y);

or
delay 0.25;
-- Decide whether to switch modes;

end select;

else -- Mode = Degraded

CurrentPosition Backup. Request New Coordinates
M1, Y);

end if;

CONCURRENCY 105

except ion
when Tasking_Error I Program-Error =>

Mode := Degraded;
end RecognizeDegraded_Mode;

end loop;

rationale
Allowing a task to terminate may not support the requirements of the system. Without an exception
handler for the rendezvous within the main task loop, the functions of the task may not be performed.

note

The use of an exception handler is the only way to guarantee recovery from an entry call to an abnormal
task. Use of the 'Terminated attribute to test a task's availability before making the entry call can
introduce a race condition where the tested task fails after the test but before the entry call (see
Guideline 6.2.3).

6.3.2 Normal Termination

guideline
"* Do not create non-terminating tasks unintentionally.

"* Explicitly shut down tasks dependent on library packages.

* Use a select statement rather than an accept statement alone.

* Provide a terminate alternative for every selective wait that does not require an else part or a delay.

example

This task will never terminate:

task body MessageBuffer is

begin -- MessageBuffer
loop

select
when Head /= Tail => -- Circular buffer not empty

accept Retrieve (Value out Element) do

end Retrieve;

or
when not ((Head = LowerBound and then

Tail = Upper Bound) or else
(Head /= Lower Bound and then
Tail = Index7Pred(Head))

=> -- Circular buffer not full

accept Store (Value : in Element);
end select;

end loop;

end MessageBuffer;

rationale

A nonterminating task is a task whose body consists of a nonterminating loop with no selective wait with
terminate, or a task that is dependent on a library package. Execution of a subprogram or block
containing a task cannot complete until the task terminates. Any task that calls a subprogram containing
a nonterminating task will be delayed indefinitely.

106 Ada QUALITY AND STYLE

The effect of unterminated tasks at the end of program execution is undefined. A task dependent on a
library package cannot be forced to terminate using a selective wait construct with terminate alternative
and should be terminated explicitly during program shutdown. One way to terminate tasks dependent on
library packages is to provide them with exit entries. Have the main subprogram call the exit entry just
before it terminates.

Execution of an accept statement or of a selective wait statement without an else part, a delay, or a
terminate alternative cannot proceed if no task ever calls the entry(s) associated with that statement.
This could result in deadlock. Following this guideline entails programming multiple termination points
in the task body. A reader can easily "know where to look" for the normal termination points in a task
body. The termination points are the end of the body's sequence of statements, and alternatives of
select statements.

exceptions

If you are simulating a cyclic executive, you may need a scheduling task that does not terminate. It has
been said that no real-time system should be programmed to terminate. This is extreme. Systematic
shutdown of many real-time systems is a desirable safety feature.

If you are considering programming a task not to terminate, be certain that it is not a dependent of a
block or subprogram from which the task's caller(s) will ever expect to return. Since entire programs
can be candidates for reuse (see Chapter 8), note that the task (and whatever it depends upon) will not
terminate. Also be certain that for any other task that you do wish to terminate, its termination does not
await this task's termination. Reread and fully understand paragraph 9.4 of Department of Defense
(1983) on "Task Dependence - Termination of Tasks."

6.3.3 The Abort Statement

guideline

* Avoid using the abort statement.

example

If required in the application, provide a task entry for orderly shutdown.

rationale

When an abort statement is executed, there is no way to know what the targeted task was doing
beforehand. Data for which the target task is responsible may be left in an inconsistent state. The overall
effect on the system of aborting a task in such an uncontrolled way requirt s careful analysis. The system
design must ensure that all tasks depending on the aborted *task can dete.t the termination and respond
appropriately.

Tasks are not aborted until they reach a synchronization point such as beginning or end of elaboration, a
delay statement, an accept statement, an entry call, a select statement, task allocation, or the execution
of an exception handler. Consequently, the abort statement may not release processor resources as soon
as you may expect. It also may not stop a runaway task because the task may be executing an infinite
loop containing no synchronization points.

6.3.4 Abnormal Termination

guideline

"* Place an exception handler for others at the end of a task body.

"* Have each exception handler at the end of a task body report the task's demise.

example

This is one of many tasks updating the positions of blips on a radar screen. When started, it is given part
of the name by which its parent knows it. Should it terminate due to an exception, it signals the fact in
one of its parent's data structures.

task body Track is

CONCURRENCY 107

MyIndex Track Index;
Neutral Boolean True;

begin -- Track

select
accept Start (Who Am I : in TrackIndex) do

MyIndex := WhoAmI;
end Start;
Neutral := False;

or
terminate;

end select;

exception
when others =>

if not Neutral then
Station(My-Index).Status Dead;

end if;

end Track;

rationale

A task will terminate if an exception is raised within it for which it has no handler. In such a caoe, the
exception is not propagated outside of the task (unless it occurs during a rendezvous). The task simply
dies with no notification to other tasks in the program. Therefore, providing exception handlers within
the task, and especially a handler for others, ensures that a task can regain control after an exception
occurs. If the task cannot proceed normally after handling an exception, this affords it the opportunity
to shut itself down cleanly and to notify tasks responsible for error recovery necessitated by the
abnormal termination of the task.

note
Do not use the task status to determine if a rendezvous can be made with the task. If task A is dependent
on task B and task A checks the status flag before it rendezvous with task B, there is a potential that task
B fails between the status test and the rendezvous. In this case, task A must provide an exception
handler to handle the TaskingError exception raised by the call to an entry of an abnormal task (see
Guideline 6.3.1).

6.4 SUMMARY
tasking

"• Use tasks to model asynchronous entities within the problem domain.

"* Use tasks to control or synchronize access to tasks or devices.

"* Use tasks to define concurrent algorithms.

"• Use anonymous task types for single instances.

"• Justify the use of dynamically allocated task objects.

"* Avoid disassociating a dynamic task from all names.

"• Do not rely on pragma Priority to prioritize the service of entries.

"* Arrange task bodies in order of their priorities (if possible).

"* Do not depend on a particular delay being achievable.

"• Do not use a busy waiting loop instead of a delay.

* Design to limit polling to those cases where absolutely necessary.

* Do not use knowledge of the execution pattern of tasks to achieve timing requirements.

108 Ada QUALITY AND STYLE

communication

"* Minimize the work performed during a rendezvous.

"• Minimize the work performed in the selective wait loop of a task.

"* Provide a handler for exception Program Error whenever you cannot avoid a selective wait
statement whose alternates can all be closed.

"* Make systematic use of handlers for TaskingError.

"* Be prepared to handle exceptions during a rendezvous.

"* Do not depend on the values of the task attributes 'callable or 'Terminated.

"* Do not depend on attributes to avoid TaskingError on an entry call.

"* Do not depend on the value of the entry attribute 'count.

"* Use the rendezvous mechanism, not shared variables, to pass data between tasks.

* Do not use shared variables as a task synchronization device.

* Do not reference nonlocal variables in a guard.

"• Use caution with conditional entry calls.

"* Use caution with selective waits with else parts.

"* Do not depend upon a particular delay in timed entry calls.

"• Do not depend upon a particular delay in selective waits with delay alternatives.

"• Minimize the number of accept and select statements per task.

"* Minimize the number of accept statements per entry.

termination

"* Place an exception handler for a rendezvous within the main tasking loop.

"* Do not create non-terminating tasks unintentionally.

• Explicitly shut down tasks dependent on library packages.

• Use a select statement rather than an accept statement alone.

* Provide a terminate alternative for e selective wait that does not require an else part or a delay.

• Avoid using the abort statement.

* Place an exception handier for others at the end of a task body.

* Have each exception handler at the end of a task body report the task's demise.

CHAPTER 7
Portability

Discussions concerning portability usually concentrate on the differences in computer systems. But the
development and runtime environment may also change:

portability (software). The ease with which software can be transferred from one computer system or
environment to another (IEEE Dictionary 1984).

And most portability problems are not pure language issues. Portability involves hardware (byte order,
device 10); software (utility libraries, operating systems, runtime libraries). This section will not address
these challenging design issues.

This section does identify the more common portability problems that are specific to Ada when moving from
one platform or compiler to another. It also suggests ways that non-portable code can be isolated. By using
the implementation hiding features of Ada, the cost of porting can be significantly reduced.

In fact, many language portability issues are solved by the strict definition of the Ada language itself. In most
programming languages, different dialects are prevalent as vendors extend or dilute a langu,,ge for various
reasons: conformance to a programming environment; or features for a particular application domain. The
Ada Compiler Validation Capability (ACVC) was developed by the U.S. Department of Defense at the Ada
Validation Facility, ASD/SIDL, Wright-Patterson Air Force Base to ensure that implementors strictly
adhered to the Ada standard.

As part of the strict definition of Ada, certain constructs are defined to be erroneous and the effect of
executing an erroneous construct is unpredictable. Therefore erroneous constructs are obviously not
portable. Erroneous constructs are discussed in Guideline 5.9, and are not repeated in this chapter.

Most programmers new to the language expect Ada to eliminate all portability problems; it definitely does
not. Certain areas of Ada are not yet covered by validation. The definition of Ada leave certain details to the
implementor. The compiler implementor's choices with respect to these details affect portability.

There are some general principles to enhancing portability exemplified by many of the guidelines in this
chapter. They are:

"* Recognize those Ada constructs that may adversely affect portability.

"* Avoid the use of these constructs where possible.

• Localize and encapsulate nonportable features of a program if their use is essential.

* Highlight the use of constructs that may cause portability problems.

These guidelines cannot be applied thoughtlessly. Many of them involve a detailed understanding of the Ada
model and its implementation. In many cases, you will have to make carefully considered tradeoffs between
efficiency and portability. Reading this chapter should improve your insight into the tradeoffs involved.

The material in this chapter was largely acquired from three sources: the Ada Run Time Environment
Working Group (ARTEWG) Catalogue of Ada Run Time Implementation Dependencies (ARTEWG
1986); the Nissen and Wallis book on Portability and Style in Ada (Nissen and Wallis 1984); and a paper
written for the U.S. Air Force by SofTech on Ada Portability Guidelines (Pappas 1985). The last of these

109

110 Ada QUALITY AND STYLE

sources (Pappas 1985) encompasses the other two and provides an in depth explanation of the issues,
numerous examples, and techniques for minimizing portability problems. Conti (1987) is a valuable
reference for understanding the latitude allowed for implementors of Ada and the criteria often used to
make decisions.

This chapter's purpose is to provide a summary of portability issues in the guideline format of this book. The
chapter does not include all issues identified in the references, but only the most significant. T-cr an in-depth
presentation, see Pappas (1985). A few additional guidelines are presented here and others are elaborated
upon where applicable. For further reading on Ada I/O portability issues, see Matthews (1987), Griest
(1989), and CECOM (1989).

Some of the guidelines in this chapter cross reference and place stricter constraints on other guidelines in
this book. These constraints apply when portability is being emphasized.

7.1 FUNDAMENTALS

This section introduces some generally applicable principles of writing portable Ada programs. It includes
guidelines about the assumptions you should make with respect to a number of Ada features and their
implementations and guidelines about the use of other Ada features to ensure maximum portability.

7.1.1 Global Assumptions

guideline

Make considered assumptions about the support provided for the following on potential target
platforms:

- Number of bits available for type Integer (range constraints).

- Number of decimal digits of precision available for floating point types.

- Number of bits available for fixed-point types (delta and range constraints).

- Number of characters per line of source text.

- Number of bits for UniversalInteger expressions.

- Number of seconds for the range of Duration.

- Number of milliseconds for Duration'Small.

instantiation

These are minimum values (or minimum precision in the case of Duration'Small) that a project or
application might assume that an implementation provides. There is no guarantee that a given
implementation provides more than the minimum, so these would be treated by the project or
application as maximum values also.

- 16 bits available for type Integer (-2**15 .. 2**15 - 1).

- 6 decimal digits of precision available for floating point types.

- 32 bits available for fixed-point types.

- 72 characters per line of source text.

- 16 bits for universal-Integer expressions.

- -86_400 .. 88_400 seconds (1 day) for the range of Duration (as specified in 9.6 (4) of Department
of Defense 1983))

- 20 milliseconds for Duration'Small (as specified in 9.6 (4) of Department of Defense 1983)).

rationale

Some assumptions must be made with respect to certain implementation dependent values. The exact
values assumed should cover the majority of the target equipment of interest. Choosing the lowest
common denominator for values improves portability.

PORTABILITY 111

note
Of the microcomputers currently available for incorporation within embedded systems, 16-bit and 32-bit
processors are prevalent. Although 4-bit and 8-bit machines are still available, their limited memory
addressing capabilities make them unsuited to support Ada programs of any size. Using current
representation schemes, 6 decimal digits of floating point accuracy implies a representation mantissa at
least 21 bits wide, leaving 11 bits for exponent and sign within a 32-bit representation. This correlates
with the data widths of floating point hardware currently available for the embedded systems market. A
32-bit minimum on fixed-point numbers correlates with the accuracy and storage requirements of
floating point numbers.

The 72-column limit on source lines in the example is an unfortunate hold-over from the days of
Hollerith punch cards with sequence numbers. There may still be machinery and software used in
manipulating source code that are bound to assumptions about this maximum line length. The 16-bit
example for universal-Integer expressions matches that for Integer storage.

The values for the range and accuracy of values of the predefined type Duration are the limits expressed
in the Ada Language Reference Manual (Department of Defense 1983, § 9.6). You should not expect
an implementation to provide a wider range or a finer granularity.

7.1.2 Actual Limits

guideline

0 Don't implicitly use an implementation limit.

rationale

The Ada model may not match exactly with the underlying hardware, so some compromises may have
been made in the implementation. Check to see if they could affect your program. Particular
implementations may do "better" than the Ada model requires while some others may be just minimally
acceptable. Arithmetic is generally implemented with a precision higher than the storage capacity (this is
implied by the Ada type model for floating point). Different implementations may behave differently on
the same underlying hardware.

7.1.3 Comments

guideline

"* Use highlighting comments for each package, subprogram and task where any nonportable features
are present.

"* For each nonportable feature employed, describe the expectations for that feature.

example

package MemoryMapped_IO is

-- WARNING - This package is implementation specific.
-- It uses absolute memory addresses to interface with the I/O
-- system. It assumes a particular printer's line length.
-- Change memory mapping and printer details when porting.

Printer_Line_Length : constant := 132;

type Data is array (1 .. PrinterLine Length) of Character;

procedure WriteLine (Line : in Data);

end MemoryMapped_IO ;

with System;
package body Memory Mapped I0 is

procedure WriteLine (Line : in Data) is

Buffer : Data;
for Buffer use at System. Physical_Address(16#200#);

112 Ada QUALITY AND STYLE

begin -- Write Line
-- perform output operation through specific memory locations.

end write_Line;

end Memory Mapped 0o;

rationale

Explicitly commenting each breach of portability will raise its visibility and aid in the porting process. A
description of the non-portable feature's expectations covers the common case where vendor
documentation of the original implementation is not available to the person performing the porting
process.

7.1.4 Main Subprogram

guideline

0 Use only a parameterless procedure as the main program.

rationale

The Ada Language Reference Manual (Department of Defense 1983) places very few requirements on
the main subprogram. Assume the simplest case will increase portability. That is, assume you may only
use a parameteriess procedure as a main program.

Some operating systems are capable of acquiring and interpreting returned integer values near zero from
a function, but many others cannot. Further, many real-time, embedded systems will not be designed to
terminate, so a function or a procedure having parameters with modes out or in out will be
inappropriate to such applications.

This leaves procedures with in parameters. Although some operating systems can pass parameters in to a
program as it starts, others cannot. Also, an implementation may not be able to perform type checking
on such parameters even if the surrounding environment is capable of providing them.

note

Real-time, embedded applications may not have an "operator" initiating the program to sukily the
parameters, in which case it would be more appropriate for the program to have bcen compiled with a
package containing the appropriate constant values or for the program to read the necessary values from
switch settings or a downloaded auxiliary file. In any case, the variation in surrounding initiating
environments is far too great to depend upon the kind of last-minute (program) parameterization
implied by (subprogram) parameters to the main subprogram.

7.1.5 Encapsulating Implementation Dependencies

guideline

"* Create packages specifically designed to isolate hardware and implementation dependencies and
designed so that their specification will not change when porting.

"• Clearly indicate the objectives if machine or solution efficiency is the reason for hardware or
implementation dependent code.

* For the packages that hide implementation dependencies, maintain different package bodies for
different target environments.

* Isolate interrupt receiving tasks into implementation dependent packages.

example

See Guideline 7.1.3.

rationale

Encapsulating hardware and implementation dependencies in a package allows the remainder of the
code to ignore them and thus to be fully portable. It also localizes the dependencies. making it clear
exactly which parts of the code may need to change when porting the program.

PORTABILITY 113

Some implementation-dependent features may be used to achieve particular performance or efficiency
objectives. Commenting these objectives ensures that the programmer can find an appropriate way to
achieve them when porting to a different implementation, or explicitly recognize that they cannot be
achieved.

Interrupt entries are implementation-dependent features that may not be supported (e.g., VAX Ada
uses pragmas to assign system traps to "normal" rendezvous). However, interrupt entries cannot be
avoided in most embedded real-time systems and it is reasonable to assume that they are supported by
an Ada implementation. The value for an interrupt is implementation-defined. Isolate it.

note

Ada can be used to write machine-dependent programs that take advantage of an implementation in a
manner consistent with the Ada model, but which make particular choices where Ada allows
implementation freedom. These machine dependencies should be treated in the same way as any other
implementation dependent features of the code.

7.1.6 Implementation-Added Features

guideline

* Avoid the use of vendor supplied packages.

• Avoid the use of features added to the predefined packages that are not specified in the language
definition.

rationale

Vendor-added features are not likely to be provided by other implementations. Even if a majority of
vendors eventually provide similar additional features, they are unlikely to have identical formulations.
Indeed, different vendors may use the same formulation for (semantically) entirely different features.

exceptions

There are many types of applications that require the use of these features. Examples include:
multilingual systems that standardize on a vendor's file system, applications that are closely integrated
with vendor products (i.e., user interfaces), and embedded systems for performance reasons. Isolate
the use of these features into packages.

7.2 NUMERIC TYPES AND EXPRESSIONS
A great deal of care was taken with the design of the Ada features related to numeric computations to ensure
that the language could be used in embedded systems and mathematical applications where precision was
important. As far as possible, these features were made portable. However, there is an inevitable tradeoff
between maximally exploiting the available precision of numeric computation on a particular machine and
maximizing the portability of Ada numeric constructs. This means that these Ada features. particularly
numeric types and expressions, must be used with great care if full portability of the resulting program is to be
guaranteed.

7.2.1 Predefined Numeric Types

guideline

"• Do not use the predefined numeric types in package Standard. Use range and digits declarations
and let the implementation do the derivation implicitly from the predefined types.

"• For programs that require greater accuracy than that provided by the global assumptions, define a
package that declares a private type and operations as needed; see Pappas (1985) for a full
explanation and examples.

example

The second and third examples below are not representable as subranges of Integer on a machine with a
16-bit word. The first example below allows a compiler to choose a multiword representation if
necessary.

114 Ada QUALITY AND STYLE

use
type SecondOf Day is range 0 86_400;

rather than
type Second_OfDay is new Integer range 1 86_400;

or

subtype SecondOfDay is Integer range 1 . 86_400;

rationale

An implementor is free to define the range of the predefined numeric types. Porting code from an
implementation with greater accuracy to one of lesser is a time consuming and error-prone process.
Many of the errors are not reported until run.-time.

This applies to more than just numerical computation. An easy-to-overlook instance of this problem
occurs if you neglect to use explicitly declared types for integer discrete ranges (array sizes, loop ranges.
etc.) (see Guidelines 5.5.1 and 5.5.2). If you do not provide an explicit type when specifying index
constraints and other discrete ranges, a predefined integer type is assumed.

exceptions

Any indexing into the predefined String type requires that the index at least be a subtype of the
predefined Integer type. The predefined packages also use the various predefined types.

note

There is an alternative which this guideline permits. As Guideline 7.1.5 suggests, implementation
dependencies can be encapsulated in packages intended for that purpose. This could include the
definition of a 32-bit integer type. It would then be possible to derive additional types from that 32-bit
type.

7.2.2 Ada Model

guideline

Know the Ada model for floating point types and arithmetic.

rationale

Declarations of Ada floating point types give users control over both the representation and arithmetic
used in floating point operations. Portable properties of Adi programs are derived from the models for
floating point numbers of the subtype and the corresponding safe numbers. The relative spacing and
range of values in a type are determined by the declaration. Attributes can be used to specify the
transportable properties of an Ada floating point type.

7.2.3 Analysis

guideline

* Carefully analyze what accuracy and precision you really need.

rationale

Floating point calculations are done with the equivalent of the implementation's predefined floating
point types. The effect of extra "guard" digits in internal computations can sometimes lower the number
of digits that must be specified in an Ada declaration. This may not be consistent over implementations
where the program is intended to be run. It may also lead to the false conclusion that the declared types
are sufficient for the accuracy required.

The numeric type declarations should be chosen to satisfy the lowest precision (smallest number of
digits) that will provide the required accuracy. Careful analysis will be necessary to show that the
declarations are adequate.

PORTABILITY 115

7.2.4 Accuracy Constraints

guideline
* Do not press the accuracy limits of the machine(s).

rationale
The Ada floating point model is intended to facilitate program portability, which is often at the expense
of efficiency in using the underlying machine arithmetic. Just because two different machines use the
same number of digits in the mantissa of a floating point number does not imply they will have the same
arithmetic properties. Some Ada implementations may give slightly better accuracy than required by
Ada because they make efficient use of the machine. Do not write programs that depend on this.

7.2.5 Comments
guideline

* Comment the analysis and derivation of the numerical aspects of a program.

rationale
Decisions and background about why certain precisions are required in a program are important to
program revision or porting. The underlying numerical analysis leading to the program should be
commented.

7.2.6 Precision of Constants

guideline
0 Use named numbers or universal real expressions rather than constants of any particular type.

rationale
For a given radix (number base), there is a loss of accuracy for some rational and all irrational numbers
when represented by a finite sequence of digits. Ada has named numbers and expressions of type
universal-real that provide maximal accuracy of representation in the source program. These numbers
and expressions are converted to finite representations at compile time. By using universal real
expressions and numbers, the programmer can automatically delay the conversion to machine types
until the point where it can be done with the minimum loss of accuracy.

note

See also Guideline 3.2.5.

7.2.7 Subexpression Evaluation

guideline
* Anticipate values of subexpressions to avoid exceeding the range of their type. Use derived types,

subtypes, factoring, and range constraints on numeric types as described in Guidelines 3.4.1, 5.3. 1,
and 5.5.3.

rationale
The Ada language does not require that an implementation perform range checks on subexpressions
within an expression. Eveni if the implementation on your program's current target does not perform
these checks, your program may be ported to an implementation that does.

7.2.8 Relational Tests

guideline
"• Use <= and >= to do relational tests on real valued arguments, avoiding the <, >, =, and /=

operations.

"* Use values of type attributes in comparisons and checking for small values.

116 Ada QUALITY AND STYLE

example
The following examples test for (1) absolutt. "equality" in storage, (2) absolute "equality" in
computation, (3) relative "equality" in storage, and (4) relative "equality" in computation.

abs (X - Y) <= FloatType'Small -- (1)

abs (X - Y) <= Float Type'Base'Small -- (2)

abs (X - Y) <= abs X * FloatType'Epsilon -- (3)

abs (X - Y) <= abs X * Float Type'Base'Epsilon -- (4)

And specifically for "equality" to zero:
abs X <= FloatType'Small -- (1)

abs X <= Float_Type'Base'Snall -- (2)

abs X <= abs X * FloatType'Epsilon -- (3)

abs X <= abs X * FloatType'Base'Epsilon -- (4)

rationale

Strict relational comparisons (<, >, =, /=) are a general problem in real valued computations.
Because of the way Ada comparisons are defined in terms of model intervals, it is possible for the values
of the Ada comparisons A < B and A = B to depend on the implementation, while A <= B evaluates
uniformly across implementations. Note that for real values in Ada, "A <= B" is not the same as "not (A
> B)". Further explanation can be found in Cohen (1986) pp.227-233.

Type attributes are the primary means of symbolically accessing the implementation of the Ada numeric
model. When the characteristics of the model numbers are accessed symbolically, the source code is
portable. The appropriate model numbers of any implementation will then be used by the generated
code.

Although zero is technically not a special case, it is often overlooked because it looks like the simplest
and, therefore, safest case. But in reality, each time comparisons involve small values, evaluate the
situation to determine which technique is appropriate.

note

Regardless of language, real valued computations have inaccuracy. That the corresponding
mathematical operations have algebraic properties usually introduces some confusion. This guideline
explains how Ada deals with the problem that most languages face.

7.3 STORAGE CONTROL

The management of dynamic storage can vary between Ada environments. In fact, some environments do
not provide any deallocation. Ada's storage control mechanisms are too implementation dependent to be
considered portable.

7.3.1 Representation Clause
guideline

* Do not use a representation clause to specify number of storage units.

rationale

The meaning of the 'StorageSize attribute is ambiguous; so, specifying a particular value will not
improve portability. It may or may not include space allocated for parameters, data, etc. Save the use
of this feature for designs that must depend on a particular vendor's implementation.

note

During a porting activity, it can be assumed that any occurrence of storage specification indicates an
implementation dependency that must be redesigned.

PORTABILITY 117

7.4 TASKING
The definition of tasking in the Ada language leaves many characteristics of the tasking model up to the
implementor. This allows a vendor to make appropriate tradeoffs for the intended application domain, but it
also diminishes the portability of designs and code employing the tasking features. In some respects this
diminished portability is an inherent characteristic of concurrency approaches (see Nissen and Wallis 1984,
37).

A discussion of Ada tasking dependencies when employed in a distributed target environment is beyond the
scope of this book. For example, multi-processor task scheduling, interprocessor rendezvous, and the
distributed sense of time through package Calendar are all subject to differences between implementations.
For more information, Nissen and Wallis (1984) and ARTEWG (1986) touch on these issues and (Volz et
al. 1985) is one of many research articles available.

7.4.1 Task Activation Order
guideline

* Do not depend on the order in which task objects are activated when declared in the same
declarative list.

rationale

The order is left undefined in the Ada Language Reference Manual (Department of Defense 1983).

7.4.2 Delay Statements

guideline

* Do not depend on a particular delay being achievable (Nissen and Wallis 1984).

* Never use a busy waiting loop instead of a delay.

* Design to limit polling to those cases where it is absolutely necessary.

* Never use knowledge of the execution pattern of tasks to achieve timing requirements.

rationale

The rationale for this appears in Guideline 6.1.5. In addition, the treatment of delay statements varies
from implementation to implementation thereby hindering portability.

7.4.3 Package Calendar, Type Duration, and System.Tick

guideline

* Do not assume a correlation between system.Tick and package calendar or type Duration (see
Guideline 6.1.5).

rationale

Such a correlation is not required, although it may exist in some implementations.

7.4.4 Select Statement Evaluation Order
guideline

* Do not depend on the order in which guard conditions are evaluated or on the algorithm for
choosing among several open select alternatives.

rationale

The language does not define the order of these conditions, so assume that they are arbitrary.

118 Ada QUALITY AND STYLE

7.4.5 Task Scheduling Algorithm

guideline
"* Do not assume that tasks execute uninterrupted until they reach a synchronization point.

"* Use pragma Priority to distinguish general levels of importance only (see Guideline 6.1.4).

rationale

The Ada tasking model requires that tasks be synchronized only through the explicit means provided in
the language (i.e., rendezvous, task dependence, pragma Shared). The scheduling algorithm is not
defined by the language and may vary from time sliced to preemptive priority. Some implementations
(e.g., VAX Ada) provide several choices that a user may select for the application.

note

The number of priorities may vary between implementations. In addition, the manner in which tasks of
the same priority are handled may vary between implementations even if the implementations use the
same general scheduling algorithm.

exceptions

In real-time systems it is often necessary to tightly control the tasking algorithm to obtain the required
performance. For example, avionics systems are frequently driven by cyclic events with limited
asynchronous interruptions. A nonpreemptive tasking model is traditionally used to obtain the greatest
performance in these applications. Cyclic executives can be programmed in Ada, as can a progression of
scheduling schemes from cyclic through multiple-frame-rate to full asynchrony (MacLaren 1980)
although an external clock is usually required.

7.4.6 Abort
guideline

* Avoid using the abort statement.

rationale

The rationale for this appears in Guideline 6.3.3. In addition, treatment of the abort statement varies
from implementation to implementation thereby hindering portability.

7.4.7 Shared Variables and Pragma Shared

puideline

* Do not share variables.

* Have tasks communicate through the rendezvous mechanism.

* Do not use shared variables as a task synchronization device.

• Use pragma Shared only when you are forced to by run time system deficiencies.

rationale

The rationale for this appears in Guideline 6.2.4. In addition, the treatment of shared variables varies
from implementation to implementation thereby hindering portability.

7.5 EXCEPTIONS
Care must be exercised using predefined exceptions since aspects of their treatment may vary between
implementations. Implementation-defined exceptions must, of course, be avoided. Other guidelines
concerning exceptions can be found in Guidelines 4.3 and 5.8.

7.5.1 Predefined Exceptions
guideline

* Do not depend on the exact locations at which predefined exceptions are raised.

PORTABILITY 119

rationale

The Ada Language Reference Manual (Department of Defense 1983) states that among
implementations, a predefined exception for the same cause may be raised from different locations.
You will not be able to discriminate between the exceptions. Further, each of the predefined exceptions
is associated with a variety of conditions. Any exception handler written for a predefined exception must
be prepared to deal with any of these conditions.

7.5.2 Constraint-Error and Numeric-Error

guideline

* Catch NumericError exceptions with a NumericError I ConstraintError exception handler.

* Do not use a separate exception handler for NumericError and constraintError.

rationale

In cases where NumericError may be raised, an implementation is allowed to raise ConstraintError
instead. In fact, there is no requirement that an implementation raise the same exception under the
same circumstances. It is not enough to replace the NumericError exception with a constraint Error.
Either one may be raised; and if NumericError is raised, it will not be caught with a simple
ConstraintError exception handler.

7.5.3 Implementation-Defined Exceptions
guideline

"* Do not raise implementation-defined exceptions.

"* Convert implementation defined exceptions within interface packages to visible user-defined
exceptions.

rationale

No exception defined by an implementation can be guaranteed to be portable to other implementations
whether or not they are from the same vendor. Not only may the names be different, but the range of
conditions triggering the exceptions may be different also.

If you create interface packages for the implementation-specific portions of your program, those
packages can catch or recognize implementation specific exceptions and convert them into
user-defined exceptions that have been declared in the specification. Do not allow yourself to be forced
to find and change the name of every handler you have written for these exceptions when the program is
ported.

7.6 REPRESENTATION CLAUSES AND IMPLEMENTATION-
DEPENDENT FEATURES

Ada provides many implementation-dependent features that permit greater control over and interaction
with the underlying hardware architecture than is normally provided by a high-order language. These
mechanisms are intended to assist in systems programming and real-time programming to obtain greater
efficiency (e.g., specific size layout of variables through representation clauses) and direct hardware
interaction (e.g., interrupt entries) without having to resort to assembly level programming.

Given the objectives for these features, it is not surprising that you must usually pay a significant price in
portability to use them. In general, where portability is the main objective, do not use these features. When
you must use these features, encapsulate them in packages well-commented as interfacing to the particular
target environment. This section identifies the various features and their recommended use with respect to
portability.

120 Ada QUALITY AND STYLE

7.6.1 Representation Clauses
guideline

"* Use algorithms that do not depend on the representation of the data and therefore do not need
representation clauses.

"* Use representation clauses when accessing interface data or when a specific representation is
needed to implement a design.

rationale

In many cases, it is easy to use representation clauses to implement an algorithm, even when it is not
necessary. There is also a tendency to document the original programmer's assumptions about the
representation for future reference. But there is no guarantee that another implementation will support
the representation chosen. Unnecessary representation clauses also confuse porting or maintenance
efforts which must assume that the programmer depends on the documented representation.

Interfaces to non-Ada systems and external devices are the most common situations where a
representation clause is needed. Uses of pragma Interface and address clauses should be evaluated
during design and porting to determine whether a representation clause is needed.

note

During a porting effort, all representation clauses can be evaluated as either design artifacts or
specifications for accessing interface data that might change with a new implementation.

7.6.2 Package System

guideline

* Avoid using package system constants except in attempting to generalize other machine dependent
constructs.

rationale

Since the values in this package are implementation-provided, unexpected effects can result from their
use.

exceptions

Do use package system constants to parameterize other implementation-dependent features (see Pappas
[1985] §13.7.1).

7.6.3 Machine Code Inserts

guideline

* Avoid machine code inserts.

rationale

Appendix C (of Department of Defense 1983) suggests that the package implementing machine code
inserts is optional. Additionally, it is not standardized so that machine code inserts are most likely not
portable. In fact, it is possible that two different vendors' syntax will differ for an identical target and
differences in lower-level details such as register conventions will hinder portability.

exceptions

If machine code inserts must be used to meet another project requirement, recognize the portability
decreasing effects.

In the declarative region of the body of the routine where the machine code insert is bting used, insert
comments explaining what function the insert provides, and (especially) why the insert is necessary.
Comment the necessity of using machine code inserts by delineating what went wrong with attempts to
use other higher-level constructs.

PORTABILITY 121

7.6.4 Interfacing Foreign Languages
guideline

"* Avoid interfacing Ada with other languages.

"* Isolate all subprograms employing pragma Interface to implementation-dependent (interface)
package bodies.

rationale

The problems with employing pragma Interface are complex. These problems include pragma syntax
differences, conventions for linking/binding Ada to other languages, and mapping Ada variables to
foreign language variables. By hiding these dependencies within interface packages, the amount of code
modification can be reduced.

exceptions

It is often necessary to interact with other languages, if only an assembly language to reach certain
hardware features. In these cases, clearly comment the requirements and limitations of the interface
and pragma Interface usage.

7.6.5 Implementation-Defined Pragmas and Attributes
guideline

* Avoid pragmas and attributes added by the compiler implementor.

rationale

The Ada Languaga Reference Manual (Department of Defense 1983) permits an implementor to add
pragmas and attributes to exploit a particular hardware architecture or software environment. These are
obviously even more implementation-specific and therefore less portable than an implementor's
interpretations of the predefined pragmas and attributes.

exceptions

Some implementation-dependent features are gaining wide acceptance in the Ada community to help
alleviate inherent inefficiencies in some Ada features. A good example of this is the "fast interrupt"
mechanism that provides a minimal interrupt latency time in exchange for a restrictive tasking
environment. Ada community groups (e.g., SIGAda's ARTEWG) are attempting to standardize a
common mechanism and syntax to provide this capability. By being aware of industry trends when
specialized features must be used, you can take a more general approach that will help minimize the
porting job.

7.6.6 Unchecked Deallocation
guideline

* Avoid dependence on Unchecked-Deallocation (see Guideline 5.9.2).

rationale

The unchecked storage deallocation mechanism is one method for overriding the default time at which
allocated storage is reclaimed. The earliest default time is when an object is no longer accessible, e.g.,
when control leaves the scope where an access type was declared (the exact point after this time is
implementation- dependent). Any unchecked deallocation of storage performed prior to this may result
in an erroneous Ada program if an attempt is made to access the object.

This guideline is stronger than Guideline 5.9.2 because of the extreme dependence on the
implementation of uncheckedDeallocation. Using it could cause considerable difficulty with portability.

exceptions

Using unchecked deallocation of storage can be beneficial in local control of highly iterative or recursive
algorithms where available storage may be exceeded.

122 Ada QUALITY AND STYLE

7.6.7 Unchecked Conversion

guideline

• Avoid using UncheckedConversion (see Guideline 5.9.1).

rationale

The unchecked type conversion mechanism is, in effect, a means of bypassing the strong typing facilities
in Ada. An implementation is free to limit the types that may be matched and the results that occur
when object sizes differ.

exceptions

Unchecked type conversion is useful in implementation dependent parts of Ada programs (where lack
of portability is isolated) where low-level programming and foreign language interfacing is the objective.

7.6.8 Run Time Dependencies
guideline

* Avoid the direct invocation of or implicit dependence upon an underlying host operating system or
Ada run time support system.

rationale

Features of an implementation not specified in the Ada Language Reference Manual (Department of
Defense 1983) will usually differ between implementations. Specific implementation-dependent
features are not likely to be provided in other implementations. Even if a majority of vendors eventually
provide similar features, they are unlikely to have identical formulations. Indeed, different vendors may
use the same formulation for (semantically) entirely different features.

Try to avoid these when coding. Consider the consequences of including system calls in a program on a
host development system. If these calls are not flagged for removal and replacement, the program could
go through development and testing only to be unusable when moved to a target environment which
lacks the facilities provided by those system calls on the host.

exceptions

In real-time embedded systems, making calls to low-level support system facilities may often be
unavoidable. Isolate the uses of these facilities may be too difficult. Comment them as you would
machine code inserts (see Guideline 7.6.3); they are, in a sense, instructions for the virtual machine
provided by the support system. When isolating the uses of these features, provide an interface for the
rest of your program to use which can be ported through replacement of the interface's implementation.

7.7 INPUT/OUTPUT
Input/Output facilities in Ada are not a part of the syntactic definition of the language. The constructs in the
language have been used to define a set of packages for this purpose. These packages are not expected to
meet all the I/O needs of all applications, in particular embedded systems. They serve as a core subset that
may be used on straightforward data, and that can be used as examples of building I/O facilities upon the
low-level constructs provided by the language. Providing an I/O definition that could meet the requirements
of all applications and integrate with the many existing operating systems would result in unacceptable
implementation dependencies.

The types of portability problems encountered with I/O tend to be different for applications running with a
host operating system versus embedded targets where the Ada run-time is self-sufficient. Interacting with a
host operating system offers the added complexity of coexisting with the host file system structures (e.g.,
hierarchical directories), access methods (e.g., ISAM), and naming conventions (e.g., logical names and
aliases based on the current directory). The section on Input/Output in ARTEWG (1986) provides some
examples of this type of dependency. Embedded applications have different dependencies that often tie
them to the low-level details of their hardware devices.

The major defense against these inherent implementation dependencies in I/O is to try to isolate their
functionality in any given application. The majority of the following guidelines are focused in this direction.

PORTABILITY 123

7.7.1 Name and Form Parameters

guideline

* Use constants and variables as symbolic actuals for the Name and Form parameters on the predefined
I/O packages. Declare and initialize them in an implementation dependency package.

rationale
The format and allowable values of these parameters on the predefined I/O packages can vary greatly
between implementations. Isolation of these values facilitates portability. Note that not specifying a Form
string or using a null value does not guarantee portability since the implementation is free to specify
defaults.

note
It may be desirable to further abstract the I/O facilities by defining additional create and open
procedures that hide the visibility of the Form parameter entirely (see Pappas 1985, 54-55).

7.7.2 File Closing

guideline
0 Close all files explicitly.

rationale
The Ada Language Reference Manual (Department of Defense 1983, §14.1) states, "The language
does not define what happens to external files after completion of the main program (in particular, if
corresponding files have not been closed)." The possibilities range from being closed in an anticipated
manner to deletion.

The disposition of a closed temporary file may vary, perhaps affecting performance and space
availability (ARTEWG 1986).

7.7.3 1/0 on Access Types

guideline
* Avoid performing I/O on access types.

rationale

The Ada Language Reference Manual (Department of Defense 1983) does not require that it be
supported. When such a value is written, it is placed out of reach of the implementation. Thus, it is out
of reach of the reliability-enhancing controls of strong type checking.

Consider the meaning of this operation. One possible implementation of the values of access types is
virtual addresses. If you write such a value, how can you expect another program to read that value and
make any sensible use of it? The value cannot be construed to refer to any meaningful location within
the reader's address space, nor can a reader infer any information about the writer's address space from
the value read. The latter is the same problem that the writer would have trying to interpret or use the
value if it is read back in. To wit, a garbage collection and/or heap compaction scheme may have moved
the item formerly accessed by that value, leaving that value "pointing" at space which is now being put to
indeterminable uses by the underlying implementation.

7.7.4 Package LowLevel_I0

guideline
* Minimize and isolate using the predefined package LowLevelio.

rationale
LowLeveliO is intended to support direct interaction with physical devices that are usually unique to a
given host or target environment. In addition, the data types provided to the procedures are
implementation-defined. This allows vendors to define different interfaces to an identical device.

124 Ada QUALITY AND STYLE

exceptions

Those portions of an application that must deal with this level of I/O, e.g., device drivers and real-time
components dealing with discretes, are inherently nonponable. Where performance allows, structure
these components to isolate the hardware interface. Only within these isolated portions is it
advantageous to employ the Low-Levelio interface which is portable in concept and general procedural
interface, if not completely so in syntax and semantics.

7.8 SUMMARY

fundamentals

"* Make considered assumptions about the support provided for the following on potential target
platforms:

- Number of bits available for type Integer (range constraints).

- Number of decimal digits of precision available for floating point types.

- Number of bits available for fixed-point types (delta and range constraints).

- Number of characters per line of source text.

- Number of bits for Universal_Integer expressions.

- Number of seconds for the range of Dwration.

- Number of milliseconds for Duration'Small.

"* Don't implicitly use an implementation limit.

"* Use highlighting comments for each package, subprogram and task where any nonportable features
are present.

"* For each nonportable feature employed, describe the expectations for that feature.

* Use only a parameterless procedure as the main program.

"* Create packages specifically designed to isolate hardware and implementation dependencies and
c'esigned so that their specification will not change.

"* Clearly indicate the objectives if machine or solution efficiency is the reason for hardware or
implementation dependent code.

"• For the packages that hide implementation dependencies, maintain different package bodies for
different target environments.

"* Isolate interrupt receiving tasks into implementation dependent packages.

"* Avoid the use of vendor supplied packages.

"* Avoid the use of features added to the predefined packages that are not specified in the language
definition.

numeric types and expressions

"* Do not use the predefined numeric types in package Standard. Use range and digits declarations
and let the implementation do the derivation implicitly from the predefined types.

"* For programs that require greater accuracy than that provided by the global assumptions, define a
package that declares a private type and operations as needed; see Pappas (1985) for a full
explanation and examples.

"• Know the Ada model for floating point types and arithmetic.

* Carefully analyze what accuracy and precision you really need.

"• Do not press the accuracy limits of the machine(s).

"* Comment the analysis and derivation of the numerical aspects of a program.

"* Use named numbers or universal real expressions rather than constants of any particular type.

PORTABILITY 125

" Anticipate values of subexpressions to avoid exceeding the range of their type. Use derived types.
subtypes, factoring, and range constraints on numeric types as described in Guidelines 3.4.1, 5.3. 1,
and 5.5.3.

" Use <= and >= to do relational tests on real valued arguments, avoiding the <, >, =, and /=

operations.

* Use values of type attributes in comparisons and checking for small values.

storage control

* Do not use a representation clause to specify number of storage units.

tasking

"• Do not depend on the order in which task objects are activated when declared in the same
declarative list.

"• Do not depend on a particular delay being achievable (Nissen and Wallis 1984).

"• Never use a busy waiting loop instead of a delay.

"* Design to limit polling to those cases where it is absolutely necessary.

"• Never use knowledge of the execution pattern of tasks to achieve timing requirements.

"* Do not assume a correlation between System.Tick and package calendar or type Duration (see
Guideline 6.1.5).

"* Do not depend on the order in which guard conditions are evaluated or on the algorithm for
choosing among several open select alternatives.

"* Do not assume that tasks execute uninterrupted until they reach a synchronization point.

* Use pragma Priority to distinguish general levels of importance only (see Guideline 6.1.4).

"* A. 3id using the abort statement.

"• Do not share variables.

"• Have tasks communicate through the rendezvous mechanism.

* Do not use shared variables as a task synchronization device.

* Use pragma shared only when you are forced to by run time system deficiencies.

exceptions

"* Do not depend on the exact locations at which predefined exceptions are raised.

"* Catch NumericError exceptions with a NumericError I Conqtraint*_Frror exeection handler.

"* Do not use a separate exception handler for NumericError and ConstraintError.

"* Do not raise implementation-defined exceptions.

"• Convert implementation defined exceptions within interface packages to visible user-defined
exceptions.

representation clauses and implementation-dependent features

"• Use algorithms that do not depend on the representation of the data and therefore do not need
representation clauses.

"* Use representation clauses when accessing interface data or when a specific representation is
needed to implement a design.

* Avoid using package system constants except in attempting to generalize other machine dependent
constructs.

"* Avoid machine code inserts.

"* Avoid interfacing Ada with other languages.

"* Isolate all subprograms employing pragma Interface to implementation-dependent (interface)
package bodies.

126 Ada QUALITY AND STYLE

"* Avoid pragmas and attributes added by the compiler implementor.

"• Avoid dependence on UncheckedDeallocation (see Guideline 5.9.2).

Avoid using UncheckedConversion (see Guideline 5.9.1).

* Avoid the direct invocation of or implicit dependence upon an underlying host operating system or
Ada run time support system.

input/output

* Use constants and variables as symbolic actuals for the Name and Form parameters on the predefined
I/O packages. Declare and initialize them in an implementation dependency package.

• Close all files explicitly.

"* Avoid performing I/O on access types.

"* Minimize and isolate using the predefined package Low_LevelO.

CHAPTER 8
Reusability

Reusability is the extent to which code can be used in different applications with minimal change. As code is
reused in a new application, that new application partially inherits the attributes of that code. If it is
maintainable, the application is more maintainable. If it is portable, then the application is more portable.
So this chapter's guidelines are most useful when all of the other guidelines in this book are also applied.

Several guidelines are directed at the issue of maintainability. Maintainable code is easy to change to meet
new or changing requirements. Maintainability plays a special role in reuse. When attempts are made to
reuse code, it is often necessary to change it to suit the new application. If the code cannot be changed
easily, it is less likely to be reused.

There are many issues involved in software reuse: whether to reuse parts, how to store and retrieve reusable
parts in a library, how to certify parts, how to maximize the economic value of reuse, how to provide
incentives to engineers and entire companies to reuse parts rather than reinvent them, and so on. This
chapter ignores these managerial, economic, and logistic issues to focus on the single technical issue of how
to write software parts in Ada to increase reuse potential. The other issues are just as important but are
outside of the scope of this book.

One of the design goals of Ada was to facilitate the creation and use of reusable parts to improve
productivity. To this end, Ada provides features to develop reusable parts and to adapt them once they are
available. Packages, visibility control, and separate compilation support modularity and information hiding
(see Guidelines 4.1, 4.2, 5.3, and 5.7). This allows the separation of application-specific parts of the code,
maximizes the general purpose parts suitable for reuse, and allows the isolation of design decisions within
modules, facilitating change. The Ada type system supports localization of data definitions so that consistent
changes are easy to make. Generic units directly support the development of general purpose, adaptable
code that can be instantiated to perform specific functions. Using these features carefully, and in
conformance to the guidelines in this book, produces code that is more likely to be reusable.

Reusable code is developed in many ways. Code may be scavenged from a previous project. A reusable
library of code may be developed from -cratch for a particularly well understood domain: such as a math
library. Reusable code may be developed as an intentional byproduct of a specific application. Reusable
code may be developed a certain way because a design method requires it. These guidelines are intended to
apply in all of these situations.

The experienced programmer recognizes that software reuse is much more a requirements and design issue
than a coding issue. The guidelines in this section are intended to work within an overall method for
developing reusable code. This section will not deal with artifacts of design, testing, etc. Some research into
reuse issues related specifically to the Ada language can be found in AIRMICS (1990), Edwards (1990),
and Wheeler (1992).

Regardless of development method, experience indicates that reusable code has certain characteristics, and
this chapter makes the following assumptions:

127

128 Ada QUALITY AND STYLE

- Reusable parts must be understandable. A reusable part should be a model of clarity. The
requirements for commenting reusable parts are even more stringent than those for parts specific to
a particular application.

- Reusable parts must be of the highest possible quality. They must be correct, reliable, and robust.
An error or weakness in a reusable part may have far-reaching consequences, and it is important
that other programmers can have a high degree of confidence in any parts offered for reuse.

- Reusable parts must be adaptable. To maximize its reuse potential, a part must be able to adapt to
the needs of a wide variety of users.

- Reusable parts should be independent. It should be possible to reuse a single part without also
adopting many other parts that are apparently unrelated.

In addition to these criteria, a reusable part must be easier to reuse than to reinvent, must be efficient, and
must be portable. If it takes more effort to reuse a part than to create one from scratch, or if the reused part
is simply not efficient enough, reuse does not occur as readily. For guidelines on portability, see Chapter 7.

This chapter 3hould not be read in isolation. In many respects, a well-written, reusable component is simply
an extreme example of a well-written component. All of the guidelines in the previous chapters apply to
reusable components as well as components specific to a single application. The guidelines listed here apply
specifically to reusable components.

8.1 UNDERSTANDING AND CLARITY

It is particularly important that parts intended for reuse should be easy to understand. The following must be
immediately apparent from inspection of the comments and the code itself: what the part does, how to use it,
what anticipated changes might be made to it in the future, and how it works. For maximum readability of
reusable parts, follow the guidelines in Chapter 3, some of which are repeated more strongly below.

8.1.1 Application-Independent Naming

guideline

"• Select the least restrictive names possible for reusable parts and their identifiers.

"* Select the generic name to avoid conflicting with the naming conventions of instantiations of the
generic.

" Use names which indicate the behavioral characteristics of the reusable part, as well as its
abstraction.

example

General-purpose stack abstraction:

generic

type Item is limited private:

package BoundedStack is

procedure Push (New_Item : in Item);
procedure Pop (NewestItem : in Item);

end Bounded-Stack;

Renamed appropriately for use in current application:

with BoundedStack;
package Cafeteria is

type Tray is limited private;

package Tray Stack is new BoundedStack (Item => Tray ...)

REUSABILITY 129

end cafeteria;

rationale

Choosing a general or application-independent name for a reusable part encourages its wide reuse.
When the part is used in a specific context, it can be instantiated (if generic) or renamed with a more
specific name.

When there is an obvious choice for the simplest, clearest name for a reusable part, it is a good idea to
leave that name for use by the reuser of the part, choosing a longer, more descriptive name for the
reusable part. Thus, Bounded_Stack is a better name than stack for a generic stack package because it
leaves the simpler name stack available to be used by an instantiation.

Include indications of the behavioral characteristics (but not indications of the implementation) in the
name of a reusable part so that multiple parts with the same abstraction (e.g., multiple stack packages)
but with different restrictions (bounded, unbounded, etc.) can be stored in the same Ada library and
used as part of the same Ada program.

8.1.2 Abbreviations
guideline

* Do not use any abbreviations in identifier or unit names.

example

with Calendar;
package GreenwichMeanTime is

function Clock return Calendar.Time;

end GreenwichMeanTime;

But the following abbreviation may not be clear when used in an application.
with Calendar;
with GreenwichMeanTime;

function Get GMT return Calendar.Time renames
GreenwichMeanTime.Clock;

rationale

This is a stronger guideline than Guideline 3.1.4. However well commented, an abbreviation may cause
confusion in some future reuse context. Even universally accepted abbreviations, such as GMT for
Greenwich Mean Time, can cause problems and should be used only with great caution.

The difference between this guideline and Guideline 3.1.4 involves issues of domain. When the domain
is well-defined, abbreviations and acronyms that are accepted in that domain will clarify the meaning of
the application. When that same code is removed from its domain-specific context, those abbreviations
may become meaningless.

In the example above, the package, Greenwich_MeanTime, could be used in any application without
loss of meaning. But the function GetGMT could easily be confuscd with some other acronym in a
different domain.

note

See Guideline 5.7.2 concerning the proper use of the renames clause. If a particular application makes
extensive use of the Greenwich MeanTime domain, it may be appropriate to rename the package,
GMT, within that application:

with GreenwichMean-Time;

package GMT renames GreenwichMeanTime;

130 Ada QUALITY AND STYLE

8.1.3 Generic Formal Parameters

guideline

* Document the expected behavior of generic formal parameters just as any package specification is
documented.

example

The following example shows how a very general algorithm can be developed, but must be clearly
documented to be used:

generic

-- Index provides access to values in a structure. For example,
-- an array, A.
type Index is (<>);

-- The function, Less_Than, does NOT compare the indexes
-- themselves;it compares the elements of the structure:
-- Less Than (i.j) <==> A(i) < A(j)
with function Less-Than (Indexi : in Index;

Index2 : in Index)
return Boolean;

-- This procedure swaps values of the structure (the mode won't
-- allow the indexes themselves to be swapped!):
-- LessThan (i,j) and then Swap (i,j) ==> LessThan (ji).
with procedure Swap (Indexl : in Index;

Index2 : in Index);

-- After the call to Quick-sort, the indexed structure will be
-- sorted:
-- For all i~j in First..Last : i<j => A(i) < A(j).

procedure QuickSort (First : in Index := Index'First;
Last : in Index := Index'Last);

rationale

The generic capability is one of Ada's strongest features because of its formalization. However, not all
of the assumptions made about generic formal parameters can be expressed directly in Ada. It is
important that any user of a generic know exactly what that generic needs in order to behave correctly.

In a sense, a generic specification is a contract where the instantiator must supply the formal parameters
and in return receives a working instance of the specification. Both parties are best served when the
contract is complete and clear about all assumptions.

8.2 ROBUSTNESS

The following guidelines improve the robustness of Ada code. It is easy to write code that depends on an
assumption which you do not realize that you are making. When such a part is reused in a different
environment, it can break unexpectedly. The guidelines below show some ways in which Ada code can be
made to automatically conform to its environment, and some ways in which it can be made to check for
violations of assumptions. Finally, some guidelines are given to warn you about errors which Ada does not
catch as soon as you might like.

8.2.1 Named Numbers

guideline

• Use named numbers and static expressions to allow multiple dependencies to be linked to a small
number of symbols.

exam.0le

procedure DiskDriver is

REUSABILITY 131

-- In this procedure, a number of important disk parameters are
-- linked.
Number OfSectors constant 4;
Number Of Tracks constant 200;
NumberOfSurfaces constant 18;
SectorCapacity constant 4_096;

Track-Capacity constant NumberOfSectors * SectorCapacity;
Surface-Capacity constant NumberOfTracks * Track-Capacity;
DiskCapacity constant NumberOfSurfaces * SurfaceCapacity;

type Sector-Range is range I .. NumberOfSectors;
type Track Range is range 1 .. Number of Tracks;
type SurfaceRange is range 1 .. NumberOfSurfaces;

type TrackMap is array (Sector-Range) of ... ;
type SurfaceMap is array (Track-Range) of TrackMap;
type Disk-Map is array (Surface-Range) of Surface Map;

begin -- DiskDriver

end DiskDriver;

rationale

To reuse software that uses named numbers and static expressions appropriately, just one or a small
number of constants need to be reset and all declarations and associated code are changed
automatically. Apart from easing reuse, this reduces the number of opportunities for error and
documents the meanings of the types and constants without using error-prone comments.

8.2.2 Unconstrained Arrays

guideline

"* Use unconstrained array types for array formal parameters and array return values.

"* Make the size of local variables depend on actual parameter size where appropriate.

example

type Vector is array (VectorIndex range <>) of Element;
type Matrix is array

(VectorIndex range <>, vector_Index range <>) of Element;

procedure Matrix-Operation (Data : in Matrix) is

Workspace Matrix (Data'Range(1), Data'Range(2));
TempVector Vector (Data'First(I) .. 2 * Data'Last(i));

rationale

Unconstrained arrays can be declared with their sizes dependent on formal parameter sizes. When used
as local variables, their sizes change automatically with the supplied actual parameters. This facility can
be used to assist in the adaption of a part since necessary size changes in local variables are taken care of
automatically.

8.2.3 Assumptions

guideline

* Minimize the number of assumptions made by a unit.

* For assumptions which cannot be avoided, use types to automatically enforce conformance.

* For assumptions which cannot be automatically enforced by types, add explicit checks to the cod.•.

• Document all assumptions.

132 Ada QUALITY AND STYLE

example

The following poorly written function documents, but does not check, its assumption:
-- Assumption: BCD value is less than 4 digits.
function BinaryTo BCD (BinaryValue : in Natural)

return BCD;

The next example enforces conformance with its assumption, making the checking automatic, and the
comment unnecessary:

type BinaryValues is new Natural range 0 .. 9_999;

function Binary To BCD (BinaryValue : in BinaryValues)
return BCD:

The next example explicitly checks and documents its assumption:

-- Out Of Range raised when BCD value exceeds 4 digits.
function Binary To BCD (BinaryValue : in Natural)

return BCD is

Maximum-Representable : constant Natural := 9999;

begin -- BinaryToBCD
if Binary Value > Maximum-Representable then

raise Out Of Range;
end if;

end BinaryToBCD;

rationale

Any part that is intended to be used again in another program, especially if the other program is likely to
be written by other people, should be robust. It should defend itself against misuse by defining its
interface to enforce as many assumptions as possible and by adding explicit defensive checks on
anything which cannot be enforced by the interface.

note

You can restrict the ranges of values of the inputs by careful selection or construction of the types of the
formal parameters. When you do so, the compiler-generated checking code may be more efficient than
any checks you might write. Indeed, such checking is part of the intent of the strong typing in the
language. This presents a challenge, however, for generic units where the user of your code selects the
types of the parameters. Your code must be constructed so as to deal with anM value of any type the user
may choose to select for an instantiation.

8.2.4 Subtypes in Generic Specifications
guideline

"* Beware of using subtypes as type marks when declaring generic formal objects of type in out.

"* Beware of using subtypes as type marks when declaring parameters or return values of generic
formal subprograms.

"* Use attributes rather than literal values.

example

In the following example, it appears that any value supplied for the generic formal object object would
be constrained to the range 1. . io. It also appears that parameters passed at run-time to the Put routine
in any instantiation, and values returned by the Get routine, would be similarly constrained.

subtype Range1_O1 is Integer range 1 .. 10;

generic

REUSABILITY 133

Object : in out Range_1_10;
with procedure Put (Parameter : in Range_1_10);
with function Get return Range_1_10;

package Input Output is

end Input Output;

However, this is not the case. Given the following legal instantiation:

subtype Range 15_30 is Integer range 15 .. 30;
ConstrainedObject : Range 15 30 := 15;

procedure ConstrainedPut (Parameter: in Range_15_30);
function ConstrainedGet return Range_15_30;

package Constrained Input Output
is new Input-Output (Object => Constrained_Object,

Put => ConstrainedPut,
Get => ConstrainedGet);

Object, Parameter, and the return value of Get are constrained to the range 15. .30. Thus, for example, if
the body of the generic package contains an assignment statement:

Object := i;

ConstraintError is raised when this instantiation is executed.

rationale

According to Sections 12.1.1(5) and 12.1.3(5) of the Ada Language Reference Manual (Department
of Defense 1983), when constraint checking is performed for generic formal objects, and parameters
and return values of generic formal subprograms, the constraints of the actual subtype (not the formal
subtype or the base type) are enforced.

Thus, even with a generic unit which has been instantiated and tested many times, and with an
instantiation which reported no errors at instantiation time, there can be a run-time error. Since the
subtype constraints of the generic formal are ignored, the Ada Language Reference Manual
(Department of Defense 1983) suggests using the name of a base type in such places to avoid confusion.
Even so, you must be careful not to assume the freedom to use any value of the base type because the
instantiation imposes the subtype constraints of the generic actual parameter. To be safe, always refer to
specific values of the type via symbolic expressions containing attributes like -First, 'Last, 'Pred, and
"succ rather than via literal values.

The best solution is to introduce a new generic formal type parameter and use it in place of the subtype,
as shown below:

generic
type Object Range is range <>;
Object : in out Object Range;

with procedure Put (Parameter : in ObjectRange);
with function Get return ObjectRange;

package Input-Output is

end Input-Output;

This is a clear statement by the developer of the generic unit that no assumptions are made about the
Objects type other than that it is an integer type. This should reduce the likelihood of any invalid
assumptions being made in the body of the generic unit.

For generics, attributes provide the means to maintain generality. It is possible to use literal values, but
literals run the risk of violating some constraint. For example, assuming an array's index starts at one
may cause a problem when the generic is instantiated for a zero-based array type.

134 Ada QUALITY AND STYLE

8.2.5 Overloading in Generic Units
guideline

& Be careful about overloading the names of subprograms exported by the same generic package.

example
generic

type Item is limited private;

package Input-Output is

procedure Put (value in Integer);
procedure Put (Value in Items);

end InputOutput;

rationale

If the generic package shown in the example above is instantiated with Integer (or any subtype of
Integer) as the actual type corresponding to generic formal value, then the two Put procedures have
identical interfaces, and all calls to Put are ambiguous. Therefore, this package cannot be used with type
Integer. In such a case, it is better to give unambiguous names to all subprograms. See Section 12.3(22)
of the Ada Language Reference Manual (Department of Defense 1983) for more information.

8.2.6 Hidden Tasks
guideline

"* Within a specification, document any tasks that would be activated by with'ing the specification and
by using any part of the specification.

"* Document which generic formal parameters are accessed from a task hidden inside the generic unit.

rationale

The effects of tasking becomes a major factor when reusable code enters the domain of real-time
systems. Even though tasks may be used for other purposes, their effect on scheduling algorithms is still
a concern and must be clearly documented. With the task clearly documented, the real-time
programmer can then analyze performance, priorities, and so forth to meet timing requirements; or if
necessary, he can modify or even redesign the component.

Concurrent access to data structures must be carefully planned to avoid errors, especially for data
structures which are not atomic (see Chapter 6 for details). If a generic unit accesses one of its generic
formal parameters (reads or writes the value of a generic formal object or calls a generic formal
subprogram which reads or writes data) from within a task contained in the generic unit, then there is
the possibility of concurrent access for which the user may not have planned. In such a case, the user
should be warned by a comment in the generic specification.

8.2.7 Exceptions
guideline

"• Propagate exceptions out of reusable parts. Handle exceptions within reusable parts only when you
are certain that the handling is appropriate in all circumstances.

"• Propagate exceptions raised by generic formal subprograms after performing any cleanup necessary
to the correct operation of future invocations of the generic instantiation.

* Leave state variables in a valid state when raising an exception.

* Leave parameters unmodified when raising an exception.

example

generic

type Number is limited private;

REUSABILITY 135

with procedure Get (Value out Number);

procedure ProcessNumbers;

procedure ProcessNumbers is

Local : Number;

procedure PerformCleanup Necessary. For ProcessNumbers is
separate;

begin -- ProcessNumbers

Catch Except ions_GeneratedByGet:
begin

Get (Local);

exception
when others =>

PerformCleanupNecessaryForProcessNumbers;
raise;

end Catch_ExceptionsGeneratedByGet;

end Process Numbers;

rationale
On most occasions, an exception is raised because an undesired event (such as floating-point overflow)
has occurred. Such events often need to be dealt with entirely differently with different uses of a
particular software part. It is very difficult to anticipate all the ways that users of the part may wish to
have the exceptions handled. Passing the exception out of the part is the safest treatment.

In particular, when an exception is raised by a generic formal subprogram, the generic unit is in no
position to understand why or to know what corrective action to take. Therefore, such exceptions
should always be propagated back to the caller of the generic instantiation. However, the generic unit
must first clean up after itself, restoring its internal data structures to a correct state so that future calls
may be made to it after the caller has dealt with the current exception. For this reason, all calls to
generic formal subprograms should be within the scope of a when others exception handler if the
internal state is modified, as shown in the example above.

When a reusable part is invoked, the user of the part should be able to know exactly what operation (at
the appropriate level of abstraction) has been performed. For this to be possible, a reusable part must
always do all or none of its specified function; it must never do half. Therefore, any reusable part which
terminates early by raising or propagating an exception should return to the caller with no effect on the
internal or external state. The easiest way to do this is to test for all possible exceptional conditions
before making any state changes (modifying internal state variables, making calls to other reusable parts
to modify their states, updating files, etc.). When this is not possible, it is best to restore all internal and
external states to the values which were current when the part was invoked before raising or propagating
the exception. Even when this is not possible, it is important to document this potentially hazardous
situation in the comment header of the specification of the part.

A similar problem arises with parameters of mode out or in out when exceptions are raised. The Ada
language defines these modes in terms of "copy-in" and "copy-back" semantics, but leaves the actual
parameter-passing mechanism undefined. When an exception is raised, the copy-back does not occur,
but for an Ada compiler which passes parameters by reference, the actual parameter has already been
updated. When parameters are passed by copy, the update does not occur. To reduce ambiguity,
increase portability, and avoid situations where some but not all of the actual parameters are updated
when an exception is raised, it is best to treat values of out and in out parameters like state variables,
updating them only after it is certain that no exception will be raised.

136 Ada QUALITY AND STYLE

8.3 ADAPTABILITY
Reusable parts often need to be changed before they can be used in a specific application. They should be
structured so that change is easy and as localized as possible. One way of achieving adaptability is to create
general parts with complete functionality, only a subset of which might be needed in a given application.
Another is to use Ada's generic construct to produce parts that can be appropriately instantiated with
different parameters. Both of these approaches avoid the error-prone process of adapting a part by changing
its code, but have limitations and can carry some overhead.

Anticipated changes, that is, changes that can be reasonably foreseen by the developer of the part, should be
provided for as far as possible. Unanticipated change can only be accommodated by carefully structuring a
part to be adaptable. Many of the considerations pertaining to maintainability apply. If the code is of high
quality, clear, and conforin. to well-established design principles such as information hiding, it is easier to
adapt in unforeseen ways.

8.3.1 Complete Functionality
guideline

* Provide complete functionality in a reusable part or set of parts. Build in complete functionality,
including end conditions, even if some functionality is not needed in this application.

* More specifically, provide initialization and finalization procedures for every data structure that
may contain dynamic data.

example
Incoming : Queue;

Initialize(Incoming) ; -- initialization operation

if IsFull(Incoming) then -- query operation

end if;

Finalize(Incoming); -- finalization operation

rationale

This is particularly important in designing/programming an abstraction. Completeness ensures that you
have configured the abstraction correctly, without built-in assumptions about its execution environment.
It also ensures the proper separation of functions so that they are useful to the current application and,
in other combinations, to other applications. It is particularly important that they be available to other
applications; remember that they can be "optimized" out of the final version of the current product.

When a reusable part can reasonably be implemented using dynamic data, then any application that
must control memory can use the initialization and finalization routines to guard against memory
leakage. Then if data structures become dynamic, the applications that are sensitive to these concerns
can be easily adapted.

note

The example illustrates end condition functions. An abstraction should be automatically initialized
before its user gets a chance to damage it. When that is not possible, it should be supplied with
initialization operations. In any case, it needs finalization operations. Where possible, query operations
should be provided to determine when limits are about to be exceeded, so that the user can avoid
causing exceptions to be raised.

It is also useful to provide reset operations for many objects. To see that a reset and an initiation can be
different, consider the analogous situation of a "warm boot" and a "cold boot" on a personal computer.

Even if all of these operations are not appropriate for the abstraction, the exercise of considering them
aids in formulating a complete set of operations, others of which may be used by another application.

Some implementations of the language link all subprograms of a package into the executable file,
ignoring whether they are used or not, making unused operations a liability (see Guideline 8.4.4). In

REUSABILITY 137

such cases, where the overhead is significant, create a copy of the fully functional part and comment out
the unused operations with an indication that they are redundant in this application.

93.2 Generic Units

guideline
"* Use generic units to avoid code duplication.

"* Parameterize generic units for miximum adaptability.

"* Reuse common instantiations of generic units, as well as the generic units themselves.

rationale

Ada does not allow subprograms or data types to be passed as actual parameters to subprograms during
execution. Such parameters must be specified as generic formal parameters to a generic unit when it is
instantiated. Therefore, if you want to write a subprogram for which there is variation from call to call in
the data type of objects on which it operates, or in the subprogram which it calls, then you must write the
subprogram as a generic unit and instantiate it once for each combination of data type and subprogram
parameters. The instantiations of the unit can then be called as regular subprograms.

If you find yourself writing two very similar routines differing only in the data type they operate on or the
subprograms they call, then it is probably better to write the routine once as a generic unit and instantiate
it twice to get the two versions you need. When the need arises later to modify the two routines, the
change only needs to be made in one place. This greatly facilitates maintenance.

Once you have made quch a choice, consider other aspects of the routine that these two instances may
have in common but which are not essential to the nature of the routine. Factor these out as generic
formal parameters. When the need arises later for a third similar routine, it can be automatically
produced by a third instantiation, if you have foreseen all the differences between it and the other two.
A parameterized generic unit can be very reusable.

It may seem that the effort involved in writing generic rather than nongeneric units is substantial.
However, making units generic is not much more difficult or time-consuming than making them
nongeneric once you become familiar with the generic facilities. It is, for the most part, a matter of
practice. Also, any effort put into the development of the unit will be recouped when the unit is reused,
as it surely will be if it is placed in a reuse library with sufficient visibility. Do not limit your thinking about
potential reuse to the application you are working on or to other applications with which you are very
familiar. Applications with which you are not familiar or future applications might be able to reuse your
software.

After writing a generic unit and placing it in your reuse library, the first thing you are likely to do is to
instantiate it once for your particular needs. At this time, it is a good idea to consider whether there are
instantiations which are very likely to be widely used. If so, place each such instantiation in your reuse
library so that they can be found and shared by others.

8.3.3 Using Generic Units to Encapsulate Algorithms
guideline

• Use generic units to encapsulate algorithms independently of data type.

example

This is the specification of a generic sort procedure:

generic

type Element is limited private;
type Data is array (Positive range <>) of Element;

with function "<" (Left in Elemsnt;
Right in Element)
return Boolean is <>;

with procedure Swap (Left in out Element;
Right in out Element) is <>;

138 Ada QUALITY AND STYLE

procedure Generic_Sort (DataToSort : in out Data);

The generic body looks just like a regular procedure body and can make full use of the generic formal
parameters in implementing the sort a&go-1.hm:

procedure Generic-Sort (DataToSort : in out Data) is
begin

for I in DataToSort'Range loop

"if Data To Sort(J) < Data ToSort(I) then
Swap(DataToSort(I), Data To Sort(J));

end if;

end loop;

end Generic-Sort;

The generic procedure can be instantiated as:

type IntegerArray is array (Positive range <>) of Integer;

procedure Swap (Left in out Integer;
Right in out Integer,;

procedure Sort is
new Generic_Sort (Element => Integer,

Data => IntegerArray);

or

subtype String_S0 is String (I .. 80);
type StringArray is array (Positive range <>) of String_S0;

procedure Swap (Left in out String S0;
Right in out String 80);

procedure Sort is
new GenericSort (Element => String_80,

Data => String Array);

and called as:
IntegerArray_1 : IntegerArray (1 100);

Sort (IntegerArray_l);

or
StringArray_1 : StringArray (1 100);

Sort (StringArray 1);

rationale

A sort algorithm can be described independently of the data type being sorted. This generic procedure
takes the Element data type as a generic limited private type parameter so that it assumes as little as
possible about the data type of the objects actually being operated on. It also takes Data as a generic
formal parameter so that instantiations can have entire arrays passed to them for sorting. Finally, it
explicitly requires the two operators that it needs to do the sort: comparison and swap.The sort algorithm
is encapsulated without reference to any data type. The generic can be instantiated to sort an array of
any data type.

REUSABILITY 139

8.3.4 Using Generic Units for Abstract Data Types

guideline

"* Use Pbstract data typzs in p;c~ference to abstract data objects.

"* Use generic units to implement abstract data types independently of their component data type.

example

This example presents a series of different techniques which can be used to generate abstract data types
and objects. A discussion of the merits of each follows in the rationale section below. The first is an
abstract data object (ADO), also known as an abstract state machine (ASM). It encapsulates one stack
of integers.

package BoundedStack is

subtype Element is Integer;
MaximumStackSize constant := 100;

procedure Push (New Element : in Element);
procedure Pop (Top-Element out Element);

Overflow : exception;
Underflow exception;

end BoundedStack;

"The second is an abstract data type (ADT). It differs from the ADO by exporting the Stacks type, which
allows the user to declare any number of stacks of integers. Note that since multiple stacks may now
exist, it is necessary to specify a Stack argument on calls to Push and Pop.

psckage BoundedStack is

subtype Element is Integer;
type Stack is limited private;

MaximumStackSize : constant := 100;

procedure Push (On Top in out Stack;
NewElement in Element);

procedure Pop (From Top in out Stack;
TopElement out Element);

Overflow : exception:
Underflow : exception;

private
type Stack_Information;
type Stack is access StackInformation;

end BoundedStack;

The third is a parameterless generic abstract data object (GADO). It differs from the ADO (the first
example) simply by being generic, so that the user can instantiate it multiple times to obtain multiple
stacks of integers.

generic

package Bounded-Stack is

subtype Element is Integer;

MaximumStackSize : constant := 100;

procedure Push (New Element : in Element);
procedure Pop (TopElement : out Element);

140 Ada QUALITY AND STYLE

Overflow exception;
Underflow exception;

end Bounded_Stack;

The fourth is a slight variant on the third, still a generic abstract data object (GADO) but with
parameters. It differs from the third example by making the data type of the stack a generic parameter
so that stacks of data types other than Integer can be created. Also, Max-Stacksize has been made a
generic parameter which defaults to 100 but can be specified by the user, rather than a constant defined
by the package.

generic

type Element is limited private;

with procedure Assign (From in Element;
To in out Element);

MaximumStackSize : in Natural := 100;

package BoundedStack is

procedure Push (NewElement in Element);
procedure Pop (Top-Element in out Element);

Overflow exception;
Underflow exception;

end BoundedStack;

Finally, the fifth is a generic abstract data type (GADT). It differs from the GADO in the fourth example
in the same way that the ADT in the second example differed from the ADO in the first example; it
exports the Stacks type, which allows the user to declare any number of stacks.

generic

type Element is limited private;

with procedure Assign (From in Element;
To in out Element);

MaximumStackSize : in Natural := 100;

package Bounded_Stack is

type Stack is limited private;

procedure Push (OnTop in out Stack;
New Element in Element);

procedure Pop (FromTop in out Stack;
TopElement in out Element);

Overflow exception;
Underflow exception;

private
type Stack_Information;
type Stack is access StackInformation;

end BoundedStack;

rationale

The biggest advantage of an ADT over an ADO (or a GADT over a GADO) is that the user of the
package can declare as many objects as desired with an ADT. These objects can be declared as
standalone variables or as components of arrays and records. They can also be passed as parameters.
None of this is possible with an ADO, where the single data object is encapsulated inside of the package.
Furthermore, an ADO provides no more protection of the data structure than an ADT. When a private

REUSABILITY 141

type is exported by the ADT package, as in the example above, then for both the ADO and ADT, the
only legal operations which can modify the dita are those defined explicitly Ly the package (in this case,
Push and Pop). For these reasons, an ADT or GADT is almost always preferable to an ADO or GADO,
respectively.

A GADO is similar to an ADT in one way: it allows multiple objects to be created by the user. With an
ADT, multiple objects can be declared using the type defined by the ADT package. With a GADO
(even a GADO with no generic formal parameters, as shown in the third example), the package can be
instantiated multiple times to produce multiple objects. However, the similarity ends there. The multiple
objects produced by the instantiations suffer from all restrictions described above for ADOs; they
cannot be used in arrays or records or passed as parameters. Furthermore, the objects are each of a
different type, and no operations are defined to operate on more than one of them at a time. For
example, there cannot be an operation to compare two such objects or to assign one to another. The
multiple objects declared using the type defined by an ADT package suffer from no such restrictions;
they can be used in arrays and records and can be passed as parameters. Also, they are all declared to
be of the same type, so that it is possible for the ADT package to provide operations to assign, compare,
copy, etc. For these reasons, an ADT is almost always preferable to a parameterless GADO.

The biggest advantage of a GADT or GADO over an ADT or ADO, respectively, is that the GADT and
GADO are generic and can thus be parameterized with types, subprograms, and other configuration
information. Thus, as shown above, a single generic package can support bounded stacks of any data
type and any stack size, while the ADT and ADO above are restricted to stacks of Integer, no more than
100 in size. For this reason, a GADO or GADT is almost always preferable to an ADO or ADT.

The list of examples above is given in order of increasing power and flexibility, starting with an ADO and
ending with a GADT. These advantages are not expensive in terms of complexity or development time.
The specification of the GADT above is not significantly harder to write or understand than the
specification of the ADO. The bodies are also nearly identical. Compare the body for the simplest
version, the ADO:

package body BoundedStack is

type StackSlots is array (Natural range <>) of Element;

type StackInformation is
record

Slots Stack Slots (1 .. Maximum_Stack_Size);
Index : Natural 0;

end record;

Stack : StackInformation;

procedure Push (New Element : in Element) is
begin

if Stack-Index >= MaximumStackSize then
raise Overflow;

end if;

Stack.Index := Stack.Index + 1;
Stack.Slots(Stack.Index) := New_Element;

end Push;

procedure Pop (TopElement out Element) is
begin

if Stack.Index <= 0 then
raise Underflow;

end if;

Top Element Stack.Slots(Stack.Index);
Stack.Index Stack.Index - 1;

end Pop;

end BoundedStack;

with the body for the most powerful and flexible version, the GADT:

142 Ada QUALITY AND STYLE

package body BoundedStack is

type Stack_Slots is array (Natural range <>) of Element;

type Stack_Information is
record

Slots Stack Slots (1 .. MaximumStack_size);
Index Natural -= 0;

end record;

procedure Push (OnTop in out Stack;
NewElement in Element) is

begin
if On Top.Index >= Maximum_StackSize then

raise Overflow;
end if;

On Top.Index := OnTop.Index + 1;
Assign(From => NewElement,

To => OnTop.Slots(On_Top.Index));
end Push;

procedure Pop (From-Top in out Stack;
TopElement in out Element) is

begin
if From Top.Index <= 0 then

raise Underflow;
end if;

Assign(From => From_Top.Slots(FromTop.Index),
To => TopElement);

FromTop.Index := FromTop.Index - 1;
end Pop;

end BoundedStack;

There are only two differences. First, the ADO declares a local object called Stack, while the GADT has
one additional parameter (called Stack) on each of the exported procedures Push and Pop. Second, the
GADT uses the Assign procedure rather than the assignment operator ":=" because the generic formal
type Element was declared limited private. This second difference could have been avoided by
declaring Element as private, but this is not recommended because it reduces the composability of the
generic reusable part.

note

The prt defined simple types will need an assign or equality operation when used to instantiate generics
that expect limited private types. Although it is a nuisance, it is simple enough for the few times it would
apply.

8.3.5 Iterators
guideline

"* Provide iterators for traversing complex data structures within reusable parts.

"* Provide both active and passive iterators.

"* Protect the iterators from errors due to modification of the dat,, structure during iteration.

"* Document the behavior of the iterators when the data structure is modified during traversal.

example

The following package defines an abstract list data type, with both active and passive it.rat(,-' for
traversing a list.

generic

REUSABILITY 143

type Element is limited private;

package UnboundedList is

type List is limited private;
procedure Insert (NewElement in Element;

Into in out List);

-- Passive (generic) iterator.

generic

with procedure Process (Each : in out Element);

procedure Iterate (Over : in List);

-- Active iterator
type Iterator is limited private;
procedure Initialize (Index in out Iterator;

ExistingList in List);
function More (Index in Iterator)

return Boolean;
procedure Advance (Index in out Iterator);
function Current (Index in Iterator)

return Element;
procedure Finalize (Index in out Iterator);

private

end UnboundedList;

After instantiating the generic package, and declaring a list, as:

with UnboundedList;

procedure ListUser is

type Employee is ...

package Roster is
new UnboundedList (Element => Employe-, .

EmployeeList : Roster.List;

the passive iterator is instantiated, specifying the name of the routine which should be called for each list
element when the iterator is called.

procedure ProcessEmployee (Each : in out Employee) is
begin

Perform the reouired action for EMPLOYEE here.
end Process-Employee;

procedure Process All is
new Roster.Iterate (Process => Process_Emplcyee);

The passive iterator can then be called, as:
begin -- List-User

ProcessAll(EmployeeList);
end ListUser;

Alternatively, the active iterator can he used, without the second instantiation required by the passive
iterator, as:

Iterator :Roster. Iterator;

procedure ProcessEmployee (Each : in Employee) is separate;

144 Ada QUALITY AND STYLE

begin -- List User
Roster.Initialize (Index => Iterator,

Existing-List => Employee List);
while Roster.More(Iterator) loop

Process Employee(Each => Roster.Current(Iterator));
Roster. Advance (Iterator);

end loop;

Roster. Finalize (Iterator);

end ListUser;

rationale

Iteration over complex data structures is often required and, if not provided by the part itself, can be
difficult to implement without violating information hiding principles.

Active and passive iterators each have their advantages, but neither is appropriate in all situations.
Therefore, it is recommended that both be provided to give the user a choice of which to use in each
situation.

Passive iterators are simpler and less error-prone than active iterators, in the same way that the for loop
is simpler and less error-prone than the while loop. There are fewer mistakes that the user can make in
using a passive iterator. Simply instantiate it with the routine to be executed for each list element, and
call the instantiation for the desired list. Active iterators require more care by the user. The iterator must
be declared, then initialized with the desired list, then current and Advance must be called in a loop until
more returns false, then the iterator must be terminated. Care must be taken to perform these steps in the
proper sequence. Care must also be taken to associate the proper iterator variable with the proper list
variable. It is possible for a change made to the software during maintenance to introduce an error,
perhaps an infinite loop.

On the other hand, active iterators are more flexible than passive iterators. With a passive iterator, it is
difficult to perform multiple, concurrent, synchronized iterations. For example, it is much easier to use
active iterators to iterate over two sorted lists, merging them into a third sorted list. Also, for
multidimensional data structures, a small number of active iterator routines may be able to replace a
large number of passive iterators, each of which implements one combination of the active iterators.
Consider, for example, a binary tree. In what order should the passive iterator visit the nodes? Depth
first? Breadth first? What about the need to do a binary search of the tree? Each of these could be
implemented as a passive iterator, but it may make more sense to simply define the moreLeft,
More Right, Advance-Left, and Advance-Right routines required by the active iterator to cover all
combinations. Finally, active iterators can be passed as generic formal parameters while passive iterators
cannot because passive iterators are themselves generic, and generic units cannot be passed as
parameters to other generic units.

For either type of iterator, semantic questions can arise about what happens when the data structure is
modified as it is being iterated. When writing an iterator, be sure to consider this possibility, and indicate
with comments the behavior which occurs in such a case. It is not always obvious to the user what to
expect. For example, to determine the "closure" of a mathematical "set" with respect to some
operation, a common algorithm is to iterate over the members of the set, generating new elements and
adding them to the set. In such a case, it is important that elements added to the set during the iteration
be encountered subsequently during the iteration. On the other hand, for other algorithms it may be
important that the set which it iterated is the set as it existed at the beginning of the iteration. In the case
of a prioritized list data structure, if the list is iterated in priority order, it may be important that elements
inserted at lower priority than the current element during iteration not be encountered subsequently
during the iteration, but that elements inserted at a higher priority should be encountered. In any case,
make a conscious decision about how the iterator should operate, and document that behavior in the
package specification.

Deletions from the data structure also pose a problem for iterators. It is a common mistake for a user to
iterate over a data structure, deleting it piece by piece during the iteration. If the iterator is not prepared
for such a situation, it is possible to end up dereferencing a null pointer or committing a similar error.
Such situations can be prevented by storing extra information with each data structure which indicates
whether it is currently being iterated, and using this information to disallow any modifications to the data
structure during iteration. When the data structure is declared as a limited private type, as should
usually be the case when iterators are involved, the only operations defined on the type are declared

REUSABILITY 145

explicitly in the package which declares the type, making it possible to add such tests to all modification
operations.

note

For further discussion of passive and active iterators see Ross (1989) and Booch (1987).

8.3.6 Private and Limited Private Types

guideline

"* Use limited private (not private) for generic formal types, explicitly importing assignment and
equality operations if required.

"• Export the least restrictive type that maintains the integrity of the data and abstraction while allowing
alternate implementations.

"* Use mode in out rather than out for parameters of a generic formal subprogram, when the
parameters are of an imported limited type.

example

The first example violates the guideline by having private (nonlimited) generic formal types.

generic
type Item is private;

type Key is private;

with function KeyOf (current in Item) return Key;

package List_Manager is

type List is limited private;

procedure Insert (Into in List;
NewItem in Item);

procedure Retrieve (From in List;
Using in Key;
Match in out Item);

private
type List is ...

end List_Manager;

The second example is improved by using limited private generic formal types and importing the
assignment operation for Item and the equality operator for Key.

generic

type Item is limited private;
type Key is limited private;

with procedure Assign (From in Item;
To in out Item);

with function "=" (Left in Key;
Right in Key)
return Boolean;

with function KeyOf (Current in Item)
return Key;

package ListManager is

type List is limited private;

procedure Insert (Into in List;
New_Item in Item);

procedure Retrieve (From in List;
Using in Key;
Match in out Item);

146 Ada QUALITY AND STYLE

private
type List is ...

end List-Manager;

rationale

For a generic component to be usable in as many contexts as possible, it should minimize the
assumptions that it makes about its environment and should make explicit any assumptions that are
necessary. In Ada, the assumptions made by generic units can be stated explicitly by the types of the
generic formal parameters. A limited private generic formal type prevents the generic unit from maKing
a" assumptions about the structure of objects of the type or about operations defined for such objects.
A private (nonlimited) generic formal type allows the assumption that assignment and equality
comparison operations are defined for the type. Thus, a limited private data type cannot be specified as
the actual parameter for a private generic formal type.

Therefore, generic formal types should almost always be limited private rather than just private. This
restricts the operations available on the imported type within the generic unit body but provides
maximum flexibility for the user of the generic unit. Any operations required by the generic body should
be explicitly imported as generic formal subprograms. In the second example above, only the operations
required for managing a list of items with keys are imported: Assign provides the ability to store items in
the list, and Key_Of and "=" support determination and comparison of keys during retrieval operations.
No other operations are required to manage the list. Specifically, there is no need to be able to assign
keys or compare entire items for equality. Those operations would have been implicitly available if a
private type had been used for the generic formal type, and any actual type for which they were not
defined could not have been used with this generic unit.

The situation is reversed for types exprtd by a reusable part. For exported types, the restrictions
specified by limited and limited private are restrictions on the user of the part, not on the part itself. To
provide maximum capability to the user of a reusable part, export types with as few restrictions as
possible. Apply restrictions as necessary to protect the integrity of the exported data structures and the
abstraction for the various implementations envisioned for that generic.

In the example above, the List type is exported as limited private to hide the details of the list
implementation and protect the structure of a list. Limited private is chosen over private to prevent the
user from being able to use the predefined assignment operation. This is important if the list is
implemented as an access type pointing to a linked lists of records, because the predefined assignment
would make copies of the pointer, not copies of the entire list, which the user may not realize. If it is
expected that the user needs the ability to copy lists, then a copy operation should be explicitly exported.

Because they are so restrictive, limited private types are not always the best choice for types exported by
a reusable part. In a case where it makes sense to allow the user to make copies of and compare data
objects, and when the underlying data type does not involve access types (so that the entire data
structure gets copied or compared), then it is better to export a (nonlimited) private type. In cases where
it does not detract from the abstraction to reveal even more about the type, then a nonprivate type (e.g.,
a numeric, enumerated, record, or array type) should be used.

For cases where limited private types are exported, the package should explicitly provide equality and
assignment operations, if appropriate to the abstraction. Limited private is almost always appropriate for
types implemented as access types. In such cases, predefined equality is seldom the most desirable
semantics. In such cases, also consider providing both forms of assignment (assignment of a reference
and assignment of a copy).

When the parameters are of an imported limited type, using mode in out instead of out for parameters
of a generic formal subprogram is important for the following reason. Ada allows an out mode parameter
of a limited private type on a subprogram Dnn when the subprogram is declared in the visible part of the
package that declares the private type. See Section 7.4.4(4) of the Ada Language Reference Manual
(Department of Defense 1983) .There is no such restriction in parameters of mode in out .The result of
this is that if you define a generic with a limited generic formal type and a generic formal subprogram
with an out parameter of that type, then the generic can only be instantiated with a limited private actual
type if the package which declares that type also declares a subprogram with exactly the same profile
(number and types or arguments and return value) as your generic formal subprogram. A potential user
who wants to instantiate your generic with a limited type defined in another package will not be able to
write a subprogram to pass as the generic actual.

REUSABILITY 147

note

It is possible (but clumsy) to redefine equality for nonlimited types. However, if a generic imports a
(nonlimited) private type and uses equality, it will automatically use the predefined equality and not the
user-supplied redefinition. This is another argument for using limited private generic formal parameters.

It should also be noted that the predefined packages, Sequentialio and Directio, take private types.
This will complicate 10 requirements for limited private types and should be considered during design.

8.4 INDEPENDENCE
A reusable part should be as independent as possible from other reusable parts. A potential user is less
inclined to reuse a part if that part requires the use of other parts which seem unnecessary. The "extra
baggage" of the other parts wastes time and space. A user would like to be able to reuse only that part which
is perceived as useful.

Note that the concept of a "part" is intentionally vague here. A single package does not need to be
independent of each other package in a reuse library, if the "parts" from that library which are typically
reused are entire subsystems. If the entire subsystem is perceived as providing a useful function, the entire
subsystem is reused. However, the subsystem should not be tightly coupled to all the other subsystems in the
reuse library, so that it is difficult or impossible to reuse the subsystem without reusing the entire library.
Coupling between reusable parts should only occur when it provides a strong benefit perceptible to the user.

8.4.1 Using Generic Parameters to Reduce Coupling
guideline

"* Minimize with clauses on reusable parts, especially on their specifications.

"* Use generic parameters instead of with statements to reduce the number of context clauses on a
reusable part.

"• Use generic parameters instead of with statements to import portions of a package rather than the

entire package.

example

A procedure like the following:

with Package A;
procedure ProduceAndStore A is

begin -- ProduceAndStore_A

Package_A.Produce (...);

PackageA.Store (...);

end Produce AndStoreA;

can be rewritten as a generic unit:

generic

with procedure Produce (...);
with procedure Store (...);

procedure ProduceAndStore;

procedure ProduceAndStore is

begin -- ProduceAndStore

Produce ... •);

148 Ada QUALITY AND STYLE

Store

end Produce And Store;

and then instantiated:

with Package_A;
with ProduceAnd_Store;
procedure Produce_AndStoreA is

new Produce_AndStore (Produce => PackageA.Produce,
Store => Package_A.Store);

rationale

Context (with) clauses specify the names of other units upon which this unit depends. Such
dependencies cannot and should not be entirely avoided, but it is a good idea to minimize the number of
them which occur in the specification of a unit. Try to move them to the body, leaving the specification
independent of other units so that it is easier to understand in isolation. Also, organize your reusable
parts in such a way that the bodies of the units do not contain large numbers of dependencies on each
other. Partitioning your library into independent functional areas with no dependencies spanning the
boundaries of the areas is a good way to start. Finally, reduce dependencies by using generic formal
parameters instead of with statements, as shown in the example above. If the units in a library are too
tightly coupled, then no single part can be reused without reusing most or all of the library.

The first (nongeneric) version of Produce And StoreA above is difficult to reuse because it depends on
Package A which may not be general purpose or generally available. If the operation Produce And Store
has reuse potential which is reduced by this dependency, a generic unit and an instantiation should be
produced as shown above. Note that the with clause for PackageA has been moved from the
ProduceAndistore generic procedure which encapsulates the reusable algorithm to the
ProduceAnd_StoreA instantiation. Instead of naming the package which provides the required
operations, the generic unit simply lists the required operations themselves. This increases the
independence and reusability of the generic unit.

This use of generic formal parameters in place of with clauses also allows visibility at a finer granularity.
The with clause on the nongeneric version of ProduceAndStoreA makes all of the contents of
PackageA visible to ProduceAndStoreA, while the generic parameters on the generic version make
only the Produce and store operations available to the generic instantiation.

8.4.2 Coupling Due to Pragmas

guideline

"* For nongenerics named in a context clause, avoid pragma Elaborate.

"* Use pragma Elaborate for generics named in a context clause.

"* Avoid pragma Priority in tasks hidden in reusable parts.

example

generic

package Stack is

end Stack;

with Stack;
pragma Elaborate (Stack); -- in case the body is not yet elaborated
package MyStack is

new Stack (...);

REUSABILITY 149

package body Stack is
begin

end Stack;

rationale

Pragma Elaborate controls the order of elaboration of one unit with respect to another. This is another
way of coupling units and should be avoided when possible in reusable parts, because it restricts the
number of configurations in which the reusable parts can be combined.

However, as more compilers begin to allow generics to be instantiated before the bodies are compiled,
elaboration orders that generally follow compilation order may result in program errors. By forcing the
compiler to elaborate the generic before the instantiation, this error can be avoided or possibly identify a
problem of circularity (see 10.5 of Department of Defense 1983).

Pragma Priority controls the priority of a task relative to all other tasks in a particular system. It is
inappropriate in a reusable part which does not know anything about the requirements and importance
of other parts of the systems in which it is reused. Give careful consideration to a reusable part which
claims that it can only be reused if its embedded task has the highest priority in the system. No two such
parts can ever be used together.

note

It is not possible to parameterize tasks with a priority to be specified at instantiation or elaboration.
However, a library of reusable parts that contain tasks can be designed to depend on a single package of
named numbers. These named numbers can then be easily updated to fit the application's need with
the simple procedure of recompiling any library units that depend on the named numbers. The
configuration management implications of such an approach are heavily dependent on the Ada
development environment and compilation system.

8.4.3 Part Families
guideline

& Create families of generic or other parts with similar specifications.

example

The Booch parts (Booch 1987) are an example of the application of this guideline.

rationale

Different versions of similar parts (e.g., bounded versus unbounded stacks) may be needed for different
applications or to change the properties of a given application. Often, the different behaviors required
by these versions cannot be obtained using generic parameters. Providing a family of parts with similar
specifications makes it easy for the programmer to select the appropriate one for the current application
or to substitute a different one if the needs of the application change.

note

A reusable part which is structured from subparts which are members of part families is particularly easy
to tailor to the needs of a given application by substitution of family members.

8.4.4 Conditional Compilation

guideline

0 Structure reusable code to take advantage of dead code removal by the compiler.

example

package Matrix Math is

type Algorithm is (Gaussian, Pivoting, Choleski, Tri_Diagonal);

150 Ada QUALITY AND STYLE

generic
WhichAlgorithm : in Algorithm := Gaussian;

procedure Invert (

end MatrixMath;

package body MatrixMath is

procedure Invert (...) is

begin -- Invert
case WhichAlgorithm is

when Gaussian => ...
when Pivoting => ...
when Choleski => ...
when Tri Diagonal => ...

end case;

end Invert;

end MatrixMath;

rationale

Some compilers omit object code corresponding to parts of the program which they detect can never be
executed. Constant expressions in conditional statements take advantage of this feature where it is
available, providing a limited form of conditional compilation. When a part is reused in an
implementation that does not support this form of conditional compilation, this practice produces a
clean structure which is easy to adapt by deleting or commenting out redundant code where it creates an
unacceptable overhead.

This feature should be used when other factors prevent the code from being separated into separate
subunits. In the above example, it would be preferable to have a different procedure for each algorithm.
But the algorithms may differ in slight but complex ways so as to make separate procedures difficult to
maintain.

caution

Be aware of whether your implementation supports dead code removal, and be prepared to take other
steps to eliminate the overhead of redundant code if necessary.

8.4.5 Table-Driven Programming

guideline

* Write table-driven reusable parts where possible and appropriate.

example

The epitome of table-driven reusable software is a parser generation system. A specification of the form
of the input data and of its output, along with some specialization code, is converted to tables that are to
be "walked" by pre-existing code using predetermined algorithms in the parser produced. Other forms
of "application generators" work similarly.

rationale

Table-driven (sometimes known as data-driven) programs have behavior that depends on data with'ed
at compile time or read from a file at run-time. In appropriate circumstances, table-driven programming
provides a very powerful way of creating general-purpose, easily tailorable, reusable parts.

note

Consider whether differences in the behavior of a general-purpose part could be defined by some data
structure at compile- or run-time and, if so, structure the part to be table-driven. The approach is most
likely to be applicable when a part is designed for use in a particular application domain but needs to be

REUSABILITY 151

specialized for use in a specific application within the domain. Take particular care in commenting the
structure of the data needed to drive the part.

8.5 SUMMARY

understanding and clarity

"* Select the least restrictive names possible for reusable parts and their identifiers.

"* Select the generic name to avoid conflicting with the naming conventions of instantiations of the
generic.

* Use names which indicate the behavioral characteristics of the reusable part, as well as its
abstraction.

"* Do not use any abbreviations in identifier or unit names.

"* Document the expected behavior of generic formal parameters just as any package specification is
documented.

robustness

"* Use named numbers and static expressions to allow multiple dependencies to be linked to a small
number of symbols.

"* Use unconstrained array types for array formal parameters and array return values.

"• Make the size of local variables depend on actual parameter size where appropriate.

* Minimize the number of assumptions made by a unit.

"• For assumptions which cannot be avoided, use types to automatically enforce conformance.

"* For assumptions which cannot be automatically enforced by types, add explicit checks to the code.

"* Document all assumptions.

"* Beware of using subtypes as type marks when declaring generic formal objects of type in out.

"* Beware of using subtypes as type marks when declaring parameters or return values of generic
formal subprograms.

"* Use attributes rather than literal values.

"* Be careful about overloading the names of subprograms exported by the same generic package.

"* Within a specification, document any tasks that would be activated by with'ing the specification and
by using any part of the specification.

"• Document which generic formal parameters are accessed from a task hidden inside the generic unit.

* Propagate exceptions out of reusable parts. Handle exceptions within reusable parts only when you
are certain that the handling is appropriate in all circumstances.

"* Propagate exceptions raised by generic formal subprograms after performing any cleanup necessary
to the correct operation of future invocations of the generic instantiation.

"* Leave state variables in a valid state when raising an exception.

"* Leave parameters unmodified when raising an exception.

adaptability

* Provide complete functionality in a reusable part or set of parts. Build in complete functionality.
including end conditions, even if some functionality is not needed in this application.

"* More specifically, provide initialization and finalization procedures for every data structure that
may contain dynamic data.

"* Use generic units to avoid code duplication.

"* Parameterize generic units for maximum adaptability.

"* Reuse common instantiations of generic units, as well as the generic units themselves.

152 Ada QUALITY AND STYLE

* Use generic units to encapsulate algorithms independently of data type.

* Use abstract data types in preference to abstract data objects.

* Use generic units to implement abstract data types independently of their component data type.

* Provide iterators for traversing complex data structures within reusable parts.

* Provide both active and passive iterators.

* Protect the iterators from errors due to modification of the data structure during iteration.

* Document the behavior of the iterators when the data structure is modified during traversal.

* Use limited private (not private) for generic formal types, explicitly importing assignment and
equality operations if required.

* Export the least restrictive type that maintains the integrity of the data and abstraction while allowing
alternate implementations.

* Use mode in out rather than out for parameters of a generic formal subprogram, when the
parameters are of an imported limited type.

Independence

"* Minimize with clauses on reusable parts, especially on their specifications.

"* Use generic parameters instead of with statements to reduce the number of context clauses on a
reusable part.

"* Use generic parameters instead of with statements to import portions of a package rather than the
entire package.

"* For nongenerics named in a context clause, avoid pragma Elaborate.

* Use a pragma Elaborate for generics named in a context clause.

"* Avoid pragma Priority in tasks hidden in reusable parts.

"* Create families of generic or other parts with similar specifications.

"* Structure reu cetoake advantage of dead code removal by the compiler.
* Write table-driven reusable parts where possible and appropriate.

CHAPTER 9
Performance

In many ways, performance is at odds with maintainability and portability. To achieve improved speed or
memory usage, the most clear algorithm sometimes gives way to confusing code. To exploit special purpose
hardware or operating system services, nonportable implementation dependencies are introduced. When
concerned about performance, you must decide how well each algorithm meets its performance and
maintainability requirements.

Apply these guidelines after an application is working correctly. Don't become obsessed with improving
performance when the application already meets its performance requirements. Modifying code to improve
performance can introduce errors--so the benefits of tweaking an algorithm should be real and clearly
outweigh the risk.

These guidelines should be applied after you know your compiler and target environment. Benchmarks and
compiler generated assembly code can be evaluated to help instantiate these guidelines for your
development environment.

9.1 IMPROVING EXECUTION SPEED

9.1.1 Pragma Inline
guideline

• Use pragma Inline when calling overhead is a significant portion of the routine's execution time.

example
procedure Assign (Variable in out Integer;

Value in Integer);
pragma Inline (Assign);

procedure Assign (Variable in out Integer;
Value in Integer) is

begin
variable :- Value;

end Assign;

rationale

Procedure and function invocations include overhead that is unnecessary when the code involved is very
small. These small routines are usually written to maintain the implementation hiding characteristics of
a package. They may also simply pass their parameters unchanged to another routine. When one of
these routines appears in some code that needs to run faster, either the implementation hiding principle
needs to be violated or a pragma Inline can be introduced.

The use of pragma Inline does have its disadvantages. It can create compilation dependencies on the
body; i.e., when the specification uses a pragma Inline, both the specification and corresponding body

153

154 Ada QUALITY AND STYLE

may need to be compiled before the specification can be used. As updates are made to the code, a
routine may become more complex (larger) and the continued use of a pragm3 Inline may no longer be
justified.

exception

Although it is rare, Inlining code may increase code size which can lead to slower performance caused
by additional paging. A pragma Inline may actually thwart a compiler's attempt to use some other
optimization technique such as register optimization.

When a compiler is already doing a good job of selecting routines to be inlined, the pragma may
accomplish little, if any, improvement in execution speed.

9.1.2 Blocks
guideline

"* Use blocks to introduce late initialization (Guideline 5.-.9).

"* Remove blocks that introduce overhead.

example

Initial : Matrix;

begin -- FindSolution

InitializeSolution Matrix:
for Row in Initial'Range(1) loop

for Col in Initial'Range(2) loop
Initial(Row, Col) := GetValue(Row, Col);

end loop;
end loop InitializeSolutionMatrix;

Converge To The Solut ion:
declare

Solution : Matrix := Identity;
MinIterations : constant Natural := .

begin -- Converge To The Solution
for Iterations in I .. Min Iterations loop

ConvergutSolution, Initial);
end loop;

end ConvergeToTheSolution;

end Find Solution;

rationale
Late initialization allows a compiler more choices in register usage optimization. Depending on the
circumstance, this may introduce a significant performance improvement.

Some compilers incur a performance penalty when declarative blocks are introduced. Careful analysis
and timing tests by the programmer may identify those declarative blocks that should be removed.

note

It is difficult to accurately predict through code inspections which declarative blocks improve
performance and which degrade performance. However, with these gene.al guidelines and a familiarity
with the particular implementation, performance can be improved.

9.1.3 Arrays

guideline

"* Use constrained arrays.

"* Use zero based indexing for arrays.

PERFORMANCE 155

example
-- M, N are variables which change value at runtime.
type Unconstrained is array (Integer range M. N) of Element;
type Zero Based is array (Integer range 0 N - M) of Element;
type Constrained_0_Based is array (Integer range 0 9) of Element;

rationale

Unconstrained arrays often leave address and offset calculations until runtime. Constrained arrays can
be optimized by performing some calculations once at compile time. A detailed discussion of the
tradeoffs and alternatives can be found in NASA (1992).

Although zero based indexing is not as intuitive for humans, it simplifies many of the necessary
calculations for indexing int' arrays.

note

Generic utilities for handling arrays can be instantiated on constrained or unconstrained arrays with
arbitrary indexes. Then the compiler can optimize the utility when the more efficient structure is used
(assuming the generic is not sharing code!). Again, further details can be found in NASA (1992).

9.1.4 Mod and Rem Operators

guideline

0 Use incremental schemes instead of the mod and rem operators when possible.

example

The following is slow:
for I in 0 .. N loop

Update(Arr(I mod Modulator));
end loop;

The following is equivalent, and avoids the mod operator:
J := 0;
for I in 0 .. N loop

Update (Arr(J));

if J = Modulator then
J 0;

else -- j < Modulator
J J + 1;

end if;
end loop;

rationale

The mod and rem operators are very convenient, but relatively slow. In isolated cases where performance
is of concern, a straightforward mapping to incremental schemes is possible.

note

Most of the incremental schemes that avoid the mod and rem operations are prime candidates for generic
utilities. Programmers may then conveniently apply this optimization when needed.

9.1.5 Constraint Checking
guideline

0 Use strong typing with carefully selected constraints to reduce runtime constraint checking.

example

In this example, two potential constraint checks are eliminated. If the function, Get-Fiesponse, returns
string, then the initialization of the variable, Input, would require constraint checking. If the variable,
Last, is type Positive, then the assignment inside the loop would require constraint checking.

1A6 Ada QUALITY AND STYLE

subtype NameIr.dex is Positive range I . 32;
subtype Name is String (NameIndex);

function GetResponse return Name is separate;

begin

Find LastPeriod:
declare

-- No Constraint Checking needed for initialization
Input : constant Name Get_Response;
LastPeriod : NameIndex := 1;

begin -- FindLastPeriod
for I in Input'Range loop

if Input(I) = '.' then
-- No Constraint Checking needed in this 'tight' loop
LastPeriod := I;

end if:

end loop;

rationale

Since runtime constraint checking is associated with slow performance, it is not intuitive that the
addition of constrained types could actually improve performance. However, the need for constraint
checking appears in many places regardless of the use of constrained subtypes. Even assignments to
variables that use the predefined types may need constraint checks. By consistently using constrained
types, many of the unnecessary runtime checking can be eliminated. Instead, the checking is usually
moved to less frequently executed code involved in system input. In the example, the function,
GetResponse, may need to check the length of a user supplied string and raise an exception.

Some compilers can do additional optimizations based on the information provided by constrained
types. For example, although an unconstrained array does not have a fixed size, it has a maximum size
which can be determined from the range of its index. Performance can be improved by limiting this
maximum size to a "reasonable" number. Refer to the discussion on unconstrained arrays found in
NASA (1992).

9.2 SUMMARY

improving execution speed

"* Use pragma Inline when calling overhead is a significant portion of the routine's execut.on time.

"* Use blocks to introduce late initialization (Guideline 5.6.9).

"* Remove blocks that introduce overhead.

"* Use constrained arrays.

"* Use zero based indexing for arrays.

"* Use incremental schemes instead of the mod and rem operators when possible.

"* Use strong typing with carefully selected constraints to reduce runtime constraint checking.

CHAPTER 10
Complete Examples

This chapter contains example programs illustrating the use of guidelines. Since many of the guidelines
leave the program writer to decide what is best, there is no single best or correct example of how to use Ada.
Instead, you will find several styles that differ from your own that may deserve consideration.

There are some guidelines that rarely have exceptions and leave little room for choice. When ýou find that
these examples do not reflect the way you normally code, investigate why by finding the guideline that was
followed and study the rationale. This practical exercise should be helpful in identifying potential areas of
improvement (whether for you or this style guide!).

The Menu-Driven User Interface example provides a short example demonstrating many of the guidelines.
It also provides the basic types for later examples.

The two versions of the Dining Philosophers example program demonstrate the portability of Ada packages
and tasking. They were provided by Dr. Michael B. Feldman. Most of the available compilers can
successfully compile these examples. They have also been successfully tested on a variety of platforms.

10.1 MENU-DRIVEN USER INTERFACE

The program implements a simple menu-driven user interface that can be used as the front end for a variety
of applications. It consists of a package for locally defined types; sPcNumericTypes; instantiations of
Input/Output packages for those types; a package to perform ASCII terminal I/O for generating menus,
writing prompts, and receiving user input; Terminal_iO; and finally an example using the terminal I/O
routines; Example.

Within Terminal_1O, subprog -am names are overloaded when several subprograms perform the same general
function but for different data types.

The body for Terminalio uses separate compilation capabilities for a subprogram, DisplayMenu, that is
larger and more involved than the rest. Note, all literals that would be required are defined as constants.
Nested loops where they exist, are also named. The numeric "get" functions defined in the body of
package, Terminalio, encapsulate exception handlers within a loop. Where locally defined types could not
be used, there is a comment explaining the reason. The use of short circuit control forms, both on an if and
an exit statement, are also illustrated.

The information that would have been in the file headers is redundant since it is contained in the title page of
this book. The file headers are omitted from the following listings:

package SPC NumericTypes is

type TinyInteger is range -2** 7 . 2** 7 - 1;

type Medium_Integer is range -2*.1 .. 2*.15 - 1;
type BigInteger is range -2**31 .. 2"'31 - 1;

157

158 Ada QUALITY AND STYLE

subtype Tiny-Natural is
TinyInteger range 0 .. TinyInteger'Last:

subtype MediumNatural is
Medium_Integer range 0 MediumInteger'Last,

subtype BigNatural is
BigInteger range 0 BigInteger'Last;

subtype Tiny-Positive is
TinyInteger range I .. TinyInteger'Last;

subtype MediumPositive is
Medium_Integer range 1 . MediumInteger'Last;

subtype Big-Positive is
BigInteger range 1 .. BigInteger'Last;

type MediumFloat is digits 8;

type Big-Float is digits 9;

subtype Probabilities is MediumFloat range 0.0 .. 1.0;

function Min (Left in TinyInteger;
Right in TinyInteger)

return TinyInteger;

function Max (Left in TinyInteger;
Right in TinyInteger)

return TinyInteger;

-- Additional function declarations to return the minimum and maximum
values for each type.

end SPCNumeric_Types;

package body SPCNumeri3_Types is

function Min (Left in TinyInteger;
Right ir TinyInteger)

return TinyInteg•r is
begin

if Left < Right then
return Left;

else -- Left >= Right
return Right;

end if;

end Min;

function Max (Left in TinyInteger;
Right : in TinyInteger)

return TinyInteger is
begin

if Left > Right then

return Left;
else -- Left <= Right

return Right;
end if;

end Max;

-- Additional functions to return minimum and maximum value for each

-- I type defined in the package.

end SPCNumeric_Types;

COMPLETE EXAMPLES 159

with SPCNumericTypes;
with Text 10;
package SPCSmallInteger_10 is

new TextIO.IntegerIO (SPCNumericTypes.TinyInteger);

with SPC Numeric-Types;
with Text 10;
package MediumInteger_IO is

new Text_IO.Integer_IO (SPCNumericTypes.Medium_Integer);

with SPCNumericTypes;
with Text_IO;
package BigInteger_IO is

new TextIO.Integer_IO (SPCNumericTypes.Big_Integer);

with SPCNumericTypes;
with TextIO;
package MediumFloat_10 is

new Text IO.FloatIO (SPCNumericTypes.MediumFloat);

with SPCNumeric_Types;
with Text IO;
package Big_Float 10 is

new TextIO.Float IO (SPCNumericTypes.Big_Float);

with SPCNumericTypes;
use SPCNumericTypes;

package TerminalIo is

MaxFileName_Length constant 30;
MaxLine constant 30;

subtype Alpha-Numeric is character range "0' .. 'Z';
subtype Line is String (1 .. MaxLine);

EmptyLine : constant Line := (others => ");

type Menu is array (AlphaNumeric) of Line;

subtype File-Name is String (1 .. MaxFileName Length)

procedure Get_FileName (Prompt in String;
Name out FileName;
NameLength out Natural);

function Yes (Prompt in String) return Boolean;
function Get (Prompt in String) return Medium_Integer;
function Get (Prompt in String) return MediumFloat;

procedure DisplayMenu (Title in String;
Options in Menu;
Choice Out AlphaNumeric);

procedure Pause (Prompt : in String);
procedure Pause;

procedure Put (Integer_value in Medium_Integer);
procedure Put (RealValue in MediumFloat);
procedure Put (Label in String;

IntegerValue in Medium_Integer);
procedure Put (Label in String;

Real_Value in MediumFloat);

procedure Put_Line (Integer Value in Medium Integer);
procedure PutLine (Real Value in Medium Float);
procedure Put Line (Label in String;

IntegerValue in Medium Integer);
procedure Put_Line (Label in String;

Real_Value in MediumFloat);

end TerminalIO;

160 Ada QUALITY AND STYLE

with Medium Integer_IO;
with MediumFloat IO;
with Text IO;

package body TerminalIO is

-- simple terminal i/o routines
subtype Response is String (1 .. 20);

Prompt Column constant 30;
QuestionMark constant String := ? "
Standard-Prompt constant String :=
Blank constant Character

RealFore constant := 4;
RealAft constant := 3;
Integer-Width constant 4;

procedure Put-Prompt (Prompt : in String;
Question in Boolean False) is

use Text_10;
begin

Put(Prompt);
if Question then

Put(QuestionMark);
end if;

Set Col(PromptColumn);
Put(Standard_Prompt);

end Put-Prompt;

function Yes (Prompt : in String) return Boolean is

ResponseString : Response := (others => Blank);
ResponseStringLength : Natural;

begin -- Yes
Get-Response:

loop
Put_Prompt(Prompt, Question => True);
Text_IO.GetLine(Response_String, ResponseStringLength);

Find FirstNonBlankCharacter:
for Position in I .. ResponseStringLength loop

if ResponseString(Position) /= Blank then

return Response String(Position) = Y or
ResponseString(Position) =y';

end if;

end loop FindFirstNonBlankCharacter;

-- issue prompt until non-blank responses
Text IO.New Line;

end loop Get-Response:
end Yes;

procedure GetFileName (Prompt : in String;
Name : out FileName;
Name Length : out Natural) is

begin
PutPrompt(Prompt);
Text_IO.GetLine(Name, Name_Length);

end GetFileName;

function Get (Prompt : in String) return MediumInteger is

COMPLETE EXAMPLES 161

ResponseString Response :=(others => Blank);
Last Natural; -- Required by GetLine.
Value :MediumInteger;

begin -- Get
loop

Catch_InputErrors:
begin

PutPrompt (Prompt);
TextIO.GetLine(ResponseString, Last);
value :

MediumInteger'value(ResponseString(1 Last));

return Value;

except ion
when others =>

TextIO.Put-Line("Please enter an integer");
end CatchInput_Errors;

end loop;
end Get;

procedure DisplayMenu (Title :in String;
Options :in Menu;
Choice : out Alpha_Numeric) is separate;

procedure Pause (Prompt : in String) is
begin

TextIO.Put-Line(Prompt);
Pause;

end Pause;

procedure Pause is

Buffer : Response;
Last :Natural;

begin -- Pause
TextIO.Put("Press return to continue");
TextIO.Get-Line(Buffer, Last);

end Pause;

function Get (Prompt : in String) return Medium_Float is

value : MediumFloat;

begin -- Get
loop

Catch_InputErrors:
begin

PutPrompt (Prompt);
MediumFloat_IO.Get(Value);
TextI0. Skip_Line;

return Value;

except ion
when others =>

Text_lO.Skip_Line;
Text-10 Put-Line("Please enter a real number");

end CatchInput_Errors;

end loop;
end Get;

162 Ada QUALITY AND STYLE

procedure Put (IntegerValue :in Medium-Integer) is
begin

Medium_-IntegerI0.Put(IntegerValue. width => IntegerWidth);
end Put;

procedure Put (RealValue :in Medium_Float) is
begin

MediumFloat-IO.Put
(Real_Value,
Fore => RealFore,
Aft => RealAft,
Exp => 0);

end Put;

procedure Put (Label in String;
IntegerValue in MediumInteger) is

begin
Text 10I. Put (Label);
Medium_-Integer_10. Put (IntegerValue);

end Put;

procedure Put (Label in String;
RealValue in MediumFloat) is

begin
Text 10I. Put (Label);
MediumFloatI0.Put

(Real_Value,
Fore => RealFore.
Aft => RealAft,
ExP => 0);

end Put;

procedure Put_Line (IntegerValue :in Medium_Integer) is
begin

Terminal_-I0.Put(IntegerValue);
Text 10 NewLine;

end Put-Line;

procedure Put_Line (Realvalue :in MediumFloat) is
begin

Terminal IO.Put(Real_Value);
Text I 0.NewLine;

end Put-Line;,

procedure Put_Line (Label :in String;
IntegerValue :in MediumInteger) is

begin
Terminal IO.Put(Label, IntegerValue);
Text_lO.ýew_-Line;

end PutLine;

procedure PutLine (Label in String;
RealValue in MediumFloat) is

begin
Terminal_-I0.Put(Label, Real _Value);
Text lO.NewLine;

end PutLine;

end Terminal_10;

COMPLETE EXAMPLES 163

separate (TerminalO)
procedure DisplayMenu (Title in String;

Options in Menu;
Choice : out AlphaNumeric) is

LeftColumn : constant := 15;
Right_Column : constant := 20;

type Alpha-Array is array (AlphaNumeric) of Boolean;

Valid : Boolean;
ValidOption : AlphaArray := (others => False);

procedure Draw-Menu (Title in String;

Options in Menu) is

use TextIO;

begin
NewPage;
NewLine;
Set Col(RightColumn);
Put-Line(Title);
NewLine;

for Choice in AlphaNumeric loop

if Options(Choice) /= EmptyLine then
ValidOption(Choice) := True;
Set Col(LeftColumn);
Put(Choice & " -- ");
PutLine(Options(Choice));

end if;

end loop;
end DrawMenu;

procedure Get_Response (Valid out Boolean;
Choice : out AlphaNumeric) is

BufferSize constant 20;
Dummy constant AlphaNumeric := X';

First Char Character;
Buffer String (1 .. BufferSize);

-- IMPLEMENTATION NOTE:
-- The following two declarations do not use locally defined types
-- I because a variable of type Natural is required by the
-- I Text 10 routines for strings, and there is no relational
-- I operator defined for our local Tiny_ Medium_, or
-- I Big Positive and the standard type Natural.
Last Natural;
Index : Positive;

function UpperCase (CurrentChar : in Character)
return Character is

Case-Difference : constant
Character'Pos('a') - Character'Pos('A-);

!).gi" vp-r..

if CurrentChar in 'a' .. 'z' then
return

Character'Val
(Character'Pos(CurrentChar) - Case_Difference)

else -- CurrentChar not in 'a' .. "z'
return CurrentChar;

end if;

164 Ada QUALITY AND STYLE

end UpperCase;

use Text_IO;
begin -- Get_Response

NewLine;
Set Col(Left_Column);
Put(StandardPrompt);

GetLine(Buffer. Last);

Index := Buffer'First;
for Position in Buffer'First .. Last loop

Index := Position;
exit when UpperCase(Buffer(Index)) in Alpha-Numeric;

end loop;

FirstChar := Upper_Case(Buffer(Index));

if FirstChar in AlphaNumeric and then
Valid Option(FirstChar) then
Valid True;
Choice FirstChar;

else -- not a valid character
Valid False;
Choice Dummy;

end if;

end GetResponse;

procedure Beep is
begin

Text IO.Put(ASCII.Bel);
end Beep;

begin -- Display_Menu
loop

DrawMenu(Title, Options);
Get Response(Valid, Choice);
exit when Valid;
Beep;

end loop;
end DisplayMenu;

with SPC NumericTypes;

with Terminal_IO;

procedure Example is

package TIO renames Terminal_10;

Example Menu : constant TIO.Menu := TIO.Menu'
('A' => "Add item
"D' => "Delete item
"K" => "Modify item
"Q" => "Quit
others => TIO.Empty_Line);

UserChoice TIO.AlphaNumeric;

Item SPCNumeric Types.MediumInteger;

begin -- Example

loop
TIO.DisplayMenu("Example Menu", Example_Menu, User Choice);

COMPLETE EXAMPLES 165

case User Choice is
when 'A' => Item := TIO.Get ("Item to add");
when 'D' => Item TIO.Get ("Item to delete");
when 'M' => Item TIO.Get ("Item to modify");
when 'Q' => exit;

when others => -- error has already been signaled to user
null;

end case;

end loop;

end Example;

-- This is what is displayed, anything but A, D, M or Q beeps

-- Example Menu

-- A -- Add item
-- D -- Delete item
-- U -- Modify item
-- Q -- Quit

10.2 LINE-ORIENTED PORTABLE DINING PHILOSOPHERS EXAMPLE

Michael B. Feldman
Dept. of Electrical Engineering and Computer Science
The George Washington University
Washington, DC 20052

(202) 994-5253

mfeldmranaseas.gwu.edu

Copyright 1991, Michael B. Feldman

These programs may be freely copied, distributed, and modified for educational purposes but not for profit.
If you modify or enhance the program (for example, to use other display systems), please send Dr. Feldman
a copy of the modified code, either on diskette or by e-mail.

This system is an elaborate implementation of Edsger Dijkstra's famous Dining Philosophers; a classical
demonstration of deadlock problems in concurrent programming.

This example uses the numeric types from the Menu-Driven User Interface example. At least one compiler
(Ada/Ed) does not support floating-point precision greater than 6 digits. In this case, BigFloat will need a
smaller precision (digits 6 for Ada/Ed).

with SPCNumericTypes;
use SPCNumericTypes;
package Random is

-- Simple pseudo-random number generator package.
-- Adapted from the Ada literature by
-- Michael B. Feldman, The George Washington University,
-- November 1990.

procedure Set_Seed (N : in Mediumpositive);

function UnitRandom return MediumFloat;

-- returns a float >=0.0 and <1.0

function Random Int (N : in MediumPositive)
return MediumPositive;

-- return a random integer in the range 1..N

end Random;

166 Ada QUALITY AND STYLE

package Chop is

task type Stick is

entry Pick_Up;
entry PutDown;

end Stick;

end Chop;

with SPCNumeric_Types;
use SPC NumericTypes;

package Phil is

task type Philosopher is

entry Come To Life (MyID in MediumNatural;
Chopstickl in MediumNatural;
Chopstick2 in MediumNatural);

end Philosopher;

type States is
(Breathing, Thinking, Eating, Done_Eating,
GotOneStick, GotOtherStick);

end Phil;

with SPC Numeric_Types;
use SPCNumeric_Types;
with Chop;
with Phil;

package Room is

Table Size : constant := 5;
subtype TableType is Medium_Natural range I .. TableSize;

Sticks : array (Table Type) of Chop.Stick;

task Head_Waiter is

entry OpenTheRoom;
entry ReportState (whichPhil in Table Type;

State in Phil.States;
How Long in MediumNatural := 0);

end Headwaiter;

end Room;

with Room;
procedure Diners is
begin

Room.HeadWaiter.Open TheRoom;

loop
delay 20.0;

end loop;
end Diners;

with Calendar;
with SPCeNumeric_Types;

use Calendar;
use SPC NumericTypes;

package body Random is

COMPLETE EXAMPLES 167

-- Body of random number generator package.
-- Adapted from the Ada literature by
-- Michael B. Feldman, The George Washington University,
-- November 1990.

Modulus : constant := 9 317;

subtype Seed Range is MediumInteger range 0 .. Modulus - 1;

Seed : Seed Range;
DefaultSeed Seed-Range;

procedure SetSeed
(N : in Medium-Positive) is separate;

function UnitRandom
return MediumFloat is separate;

function Random Int
(N : in Medium Positive)
return MediumPositive is separate;

begin
DefaultSeed

MediumInteger(Big lnteger(Seconds(Clock)) mod Modulus);
Seed := Default_Seed;

end Random;

separate (Random)
procedure SetSeed (N : in Medium-Positive) is
begin

Seed := SeedRange(N);
end SetSeed;

separate (Random)
function UnitRandom return MediumFloat is

Multiplier constant 421;
Increment constant 2_073;
Result MediumFloat;

begin -- Unit_Random

Seed (Multiplier * Seed + Increment) mod Modulus;

Result Medium Float(Seed) / MediumFloat(Modulus);
return Result;

exception
when Constraint Error I NumericError =>

Seed := Medium-Integer
((Multiplier * BigInteger(Seed) + Increment) mod
Modulus);

Result := Medium Float(Seed) / Medium_Float(Modulus);
return Result;

end UnitRandom;

separate (Random)
function RandomInt (N : in Medium Positive)

return MediumPositive is

Result : MediumPositive range 1 .. N;

begin -- Random Int

Result := Medium Positive(MediumFloat(N) * Unit_Random + 0.5):
return Result;

168 Ada QUALITY AND STYLE

except ion
when ConstraintError I NumericError =>

return 1;

end Random_Int;

package body chop is

task body Stick is
begin

loop
select

accept PickUp;
accept Put_Down;

or
terminate;

end select;
end loop;

-- No exception handler is needed here.
end Stick;

end chop;

with SPC_-Numeric-Types;
with Room;
with Random;

use SPCNumeric_Types;

package body Phil is

task body Philosopher is

type Life-Time is range I -. 100_000;

Who_-Am_-I MediumNatural;
FirstGrab MediumNatural;
SecondGrab MediumNatural;
Meal-Time MediumNatural;
ThinkTime MediumNatural;

begin -- Philosopher
accept ComeToLife (M~yID in MediumNatural;

Chopstickl in MediumNatural;
Chopstick2 in MediumNatural) do

Who_-AmI My_ID;
FirstGrab ;=Chopsticki;

Second_Grab Chopstick2:

end ComeToLife;

Room.HeadWaiter.Report_State(Who_AmI, Breathing);

for Meal in LifeTime loop

Room.Sticks(First_Grab).PickUp;
Room. HeadWaiter. ReportState

(WhoAmI, GotOneStick. FirstGrab);

Room. Sticks (SecondGrab).PickUp);
Room.HeadWaiter.ReportState

(WhoAmI, GotOtherStick, Second_Grab);

Meal_-Time :=Random.Random_Int(lO);
Room.HeadWaiter.ReportState(WhoAmI, Eating, MealTime);

delay Duration(Meal_Time);
Room.HeadWaiter.ReportState(whoAmI, Done_Eating);

Room.Sticks(FirstGrab).Put_Down;
Room.Sticks(Second_Grab).Put_Down;

COMPLETE EXAMPLES 169

Think Time := Random.RandomInt(1o);
Room.HeadWaiter.ReportState

(WhoAmI, Thinking, ThinkTime);
delay Duration(ThinkTime);

end loop;

-- No exception handler is needed here.
end Philosopher;

end Phil;

with SPC_Numeric_Types;
use SPC Numeric_Types;

with Text_10;
with Chop;
with Phil;
with Calendar;

pragma Elaborate (Phil);
package body Room is

-- A line-oriented version of the Room package, for line-oriented
-- terminals like IBM 3270"s where the user cannot do ASCII
-- screen control.
-- This is the only file in the dinirg philosophers system that
-- needs changing to use in a line-oriented environment.
-- Michael B. Feldman, The George Washington University,
-- November 1990.

Phils : array (Table Type) of Phil.Philosopher;

type Phil_Name is (Dijkstra, Texel, Booch, Ichbian, Stroustrup);

task body Head_Waiter is

T : MediumNatural;
StartTime Calendar.Time;

PhilNames constant array (TableType) of String (1 .. 18)
("Eddy Dijkstra "Putnam Texel

"Grady Booch ", "Jean Ichbiah
"Bjarne Stroustrup ");

Blanks : constant String

begin -- HeadWaiter

accept OpenTheRoom;
StartTime := Calendar.Clock;

Phils(1).Come ToLife(l, 1, 2);
Phils(3).ComeToLife(3, 3, 4);
Phils(2).ComeToLife(2, 2, 3);
Phils(5).ComeTo_Life(5, 1, 5);
Phils(4).ComeTo_Life(4, 4, 5);

loop
select

accept ReportState (WhichPhil in TableType;
State in Phil.States;
HowLong in Medium_Natural

0) do
T := Medium Natural

(Calendar."-"(Calendar.Clock, StartTime));
TextIO.Put ("T=" & Medium Natural'Image(T) & "." &

Blanks(1 .. Positive(WhichPhil)) &
PhilNames(WhichPhil));

case State is

when Phil.Breathing =>
TextIO.Put("Breathing");

170 Ada QUALITY AND STYLE

%,hen Phll.Thinking =>
TextIO.Put ("Thinking" &

MediumNatural'Image(HowLong) &
" seconds.");

when Phil.Eating =>
Text_lO.Put ("Eating" &

MediumNatural'Image(How Long) &" seconds.");

when Phil.DoneEating =>
TextIO.Put("Yum-yum (burp)");

when Phil.Got One Stick =>
TextIO.Put ("First chopstick" &

MediumNatural'Image(HowLong));

when Phil.Got Other Stick =>
TextIO.Put ("Second chopstick" &

MediumNatural'Image(HowLong))

end csse; -- State

Text IO.New Line;
end Report-State;

or
terminate;

end select;

end loop;

-- An exception handler is not needed here
end Headwaiter;

end Room;

10.3 WINDO"A'-ORIENTED PORTABLE DINING PHILOSOPHERS EXAMPLE

Michael B. Feldman
Dept. of Electrical Engineering and Computer Science
The George Washington University
Washington, DC 20052

(202) 994-5253
mfeldman@seas.g•u.edu

Copyright 1991, Michael B. Feldman

These programs may be freely copied, distributed, and modified for educational purposes but not for profit.
If you modify or enl,, ice the program (for example, to use other displaN systems), please send Dr. Feldman
a copy of the modified code, either on diskette or by e-mail.

This system is an elaborate implementation of Edsger Dijkstra's famous Dining Philosophers; a classical
demonstration of deadlock problems in concurrent programming.

This example builds on some of the utilities found in the Line-Oriented example.

package screen is

-- Procedures for drawing pictures on ANS' Terminal Screen

ScreenDepth constant 24;
Screenwidth constant 80.

subtype Depth is Integer range I . . ScreenDepth.
subtype width is Integer range I . Screen_Width.

COMPLETE EXAMPLES 171

procedure Beep;
procedure Clear_Screen;
procedure Move_Cursor (Column in Width;

Row in Depth);

end Screen;

with Screen;
use Screen;
package Windows is

type Window is private:

procedure Open
(W in out Window; -- Window variable returned
Row in Depth; -- Upper left corner
Column in Width;
Height in Depth; -- Size of window
Width in Screen.Width);

-- Create a window variable and open the window for writing.
-- No checks for overlap of windows are made.

procedure Close (W : in out Window);
-- Close window and clear window variable.

procedure Title (W in out window;
Name in String;
Under in Character);

-- Put a title name at the top of the window. If the parameter
-- Under is nonblank, underline the title with the
-- specified character.

procedure Borders (W in out Window;
Corner in Character;
Down in Character;
Across in Character);

-- Draw border around current writable area in window with
-- characters specified. Call this BEFORE Title.

procedure GoToRowColumn (W in out Window;
Row in Depth;
Column in Width);

-- Goto the row and column specified. Coordinates are relative
-- to the upper left corner of window, which is (i, 1)

procedure Put
(W in out Window;
Ch in Character);

-- put one character to the window.
-- If end of column, go to the next row.
-- If end of window, go to the top of the window.

procedure Put String (W in out window;
S in String)

-- put a string to window.

procedure New Line (W : in out window);

-- Go to beginning of next line. Next line is
-- not blanked until next character is written

private

type Window is
record

Current-Row . Depth; -- Current cursor row
FirstRow Depth;
Last Row Depth;

172 Ada QUALITY AND STYLE

CurrentColumn Width; -- Current cursor column
First Column Width;
LastColumn Width;

end record;

end Windows;

with Text 10;

package body Screen is

package My_Int_IO is new Text_IO.Integer_IO (Integer);

-- Procedures for drawing pictures on ANSI Terminal Screen

procedure Beep is
begin

TextIO.Put(Item => ASCII.Bel);
end Beep;

procedure ClearScreen is
begin

Text_I0.Put(Item => ASCII.Esc)
Text IO.Put(Item => "[2J")

end ClearScreen;

procedure MoveCursor (Column in Width;
Row in Depth) is

begin
Text_IO.NewLine;
Text_IO.Put(Item => ASCIIEsc);
TextIO.Put("[");
MyyIntIO.Put (Item => Row,

Width => 1);
TextIO.Put(Item => ";');
MyIntIO.Put (Item => Column,

width => 1);
Text_IO.Put(Item => 'f');

end MoveCursor;

end Screen;

with Text IO;
with Medium Integer_IO;
with Screen;

use Text_IO;
use Medium Integer_IO;
use Screen;

package body windows is

Cursor Row Depth I; -- Current cursor position
CursorCol Width 1;

procedure Open
(W in out Window;
Row in Depth;
Column in Width:
Height in Depth;
Width in Screen. Width) is

COMPLETE EXAMPLES 173

-- Put the Window's cursor in upper left corner
begin

W.CurrentRow := Row;
W.First Row Row;
W.Last_Row Row + Height - I;

W.Current Column := Column;
W.First Column Column;
W.LastColumn Column + Width - 1;

end Open;

procedure Close (W : in out Window) is
begin

null;
end Close;

procedure Title (W in out Window;
Name in String;
Under in Character) is

-- Put name at the top of the window. If Under nonblank,
-- underline the title.

begin
-- Put name on top line
W.CurrentColumn := W.First Column;
W.Current Row := W.First_Row;
PutString(W, Name);
NewLine(W);

-- Underline name if desired, and move the First line
-- of the Window below the title
if Under = " ' then

W.FirstRow := W.FirstRow + 1;

else -- put nonblank characters under title
for I in W.FirstColumn .. W.LastColumn loop

Put(W, Under);
end loop;
NewLine(W);
W.First_Row := W.FirstRow + 2;

end if;

end Title;

procedure GoToRowColumn (W in out Window;
Row in Depth;
Column in Width) is

-- Relative to writable Window boundaries, of course
begin

W.CurrentRow := W.FirstRow + Row;
W.CurrentColumn W.FirstColumn + Column;

end GoToRowColumn;

procedure Borders (W in out Window;
Corner in character;
Down in Character;
Across in Character) is

-- Draw border around current writable area in Window
-- with characters. Call this BEFORE Title.

begin

-- Put top line of border
Screen.Move-Cursor(W.FirstColumn, W.First_Row);
TextIO.Put(Corner);

174 Ada QUALITY AND STYLE

for J in W.FirstColumn + I .. W.Last_Column - I loop
Text IO.Put(Across);

end loop;
Text 1O.Put(Corner);

-- Put the two side lines
for I in W.First Row + I .. W.Last_Row - I loop

Screen.move_Cursor(W.FirstColumn, I);
Text_IO.Put(Down);
Screen.Move_Cursor(W.LastColumn, I);
Text IO.Put(Down);

end loop;

-- Put the bottom line of the border
Screen.MoveCursor(W.FirstColumn, W.Last_Row);
Text_IO.Put(Corner);
for J in W.FirstColumn + 1 .. W.LastColumn - 1 loop

Text IO.Put(Across);
end loop;
TextIO.Put(Corner);

-- Put the cursor at the very end of the Window
Cursor Row W.LastRow;
CursorCol W.LastColumn + 1;

-- Make the Window smaller by one character on each side
W.FirstRow := W.First Row + 1;

W.CurrentRow := W.First_Row;
W.Last Row := W.Last Row - I;
W.First Column := W.FirstColumn + 1;
W.Current Column := W.First_Column;
W.Last Column := W.LastColumn - 1;

end Borders;

procedure EraseToEndOf Line (W : in out Window) is
begin

Screen.MoveCursor(W.CurrentColumn, W.CurrentRow);

for I in W.CurrentColumn .. W.Last_Column loop
Text IO.Put(' ");

end loop;

Screen.MoveCursor(W.CurrentColumrn, W.CurrentRow);
Cursor Col W.CurrentColumn;
Cursor Row W.CurrentRow;

end EraseToEnd_Of_Line;

procedure Put (W in out Window;
Ch in Character) is

-- If after end of line, move to First character of next line
-- If about to write First character on line, blank rest of
-- line.
-- Put character.

begin
if Ch = ASCII.CR then

NewLine(W);

return;

end if;

-- If at end of current line, move to next line
if W.CurrentColumn > W.LastColumn then

if W.CurrentRow = W.Last Row then
W.CurrentRow W.FirstRow;

else -- not at end of current line
W.CurrentRow := W.CurrentRow + 1;

end if;

COMPLETE EXAMPLES 175

W.CurrentColumn := W.Firstcolumn;
end if;

-- If at W.First char, erase line
if W.CurrentColumn = W.First_Column then

Erase To EndOfLine(W);
end if:

-- Put physical cursor at Window's cursor
if Cursor Col /= W.CurrentColumn or

CursorRow I= W.CurrentRow then

Screen. MoveCursor(W.CurrentColumn, W.CurrentRow);
CursorRow := W.Current_Row;

end if;

if Ch = ASCII.BS then
-- Special backspace handling

if W.Current Column /= W.FirstColumn then
TextIO.Put(ch);
W.CurrentColumn W.CurrentColumn - i;

end if;

else -- character is not a backspace, so just write it
TextIO.Put(Ch);
W.CurrentColumn := W.Current_Column + I;

end if;

CursorCol := W.CurrentColumn;
end Put;

procedure New Line (W : in out Window) is

Col : Width;

-- If not after line, blank rest uf line.
-- Move to First character of next line

begin -- NewLine

if W.Current Column = 0 then
Erase To EndOfLine(W);

end if;

if W.CurrentRow = W.Last Row then
W.Current_Row W.First_Row;

else -- not at bottom of screen
W.CurrentRow W.Current_Row + 1;

end if;

W.CurrentColumn W.FirstColumn;
end New Line;

procedure Put_String (W in out Window;
S in String) is

begin
for I in S'First .. S'Last loop

Put(W, S(I));
end loop;

end Put-String;

begin -- Windows
Screen. ClearScreen;
Screen.MoveCursor(l. 1);

end Windows;

176 Ada QUALITY AND STYLE

with SPCNumeric_Types;
with Windows;
with Chop;
with Phil;
with Calendar;

use SPCNumericTypes;

pragMa Elaborate (Phil);
package body Room is

Phils :array (Table-Type) of Phil.Philosopher;

PhilWindows :array (TableType) of Windows.Window;

type PhilNames is (Dijkstra, Texel. Booch, Ichbiah, Stroustrup);

task body Head-waiter is

T :MediumPositive;
StartTime :Calendar.Time;

begin -- Headwaiter

accept OpenThe_Room;
Start-Time :=Calendar.Clock;

Windows.Open (W => Philwindows(1),
Row => 1.
Column => 23.
Height => 7,

width => 30);

Windows.Borders(Phil-Windows(1) - '

Windows.Title (Phil Windows(1). "Eddy Dijkstra'.-;
Phils(1).Come_To_Life(1, 1. 2);

Windows.Open (W => Phil_-windows(3),
Row => 9,

Column => 50,
Height => 7,
Width => 30);

Windows.Borders(Phil-windows(3) >, '

Windows.Title (Phil Windows(3), "Grady Booch". -4
Phils(3).ComeTo_Life(3. 3, 4);

Windows.Open (W => Phil_-windows(2),
Row => 9,

Column => 2,
Height => 7,
width => 30);

Windows.Borders(Phil-windows(2) +.- '
Windows.Title (Phil_windows(2). "Putnam Texel". -2
Phils(2).ComeToLife(2, 2. 3);

Windows.Open (W => Phil_-Windows(5).
Row => 17.

Column => 41,

width => 30);

Windows.Borders(Phil-WindoVws(5), +.I'

Windows.Title (Phil -windows(6), "Bjarne Stroustrup'. ')

Phils(5).ComeToLife(5, 1. 5);

Windows.Open (W => Phil_-windows(4),
Row => 17,

Column => 8,

Height =>-7,
Width => 30);

Windows.Borders(Phil~windows(4). +, j,'2
Windows.Title (Phil -windows(4), ,jean Ichbiah", '4
Phils(4).ComeToLife(4, 4. 5);

COMPLETE EXAMPLES 177

loop
sel ect

accept Report-state
(Which_-Phil in Table -Type;
State in Phil.States;
How-Long in Medium Natural :=0) do

T :
MediumNatural

(Calendar."-"(Calendar.Clock, StartTime));
Windows. PutString

(Phil_-Windows(Which_Phil).
"T=" & MediumNatural'Image(T) &"

case State is
when Phil.Breathing =>

Windows.PutString
(PhilWindows(Which_Phil).
"Breathing-,);

Windows.NewLine(PhilWindows(WhichPhil));

when Phil.Thinking =>
Windows. PutString

(Phil_-Windows(Which_Phil),
"Thinking" & MediumNatural'Image(How Long) &
IIseconds. ");

Windows.NewLine(PhilWindows(WhichPhil));

when Phil.Eating =>
Windows. PutString

(PhilWindows(whichPhil),
"Eating' & MediumNatural'Image(HowLong) &
I.seconds.,");

Windows.New_Line(Philwindows(WhichPhil));

when Phil.DoneEating =>
Windows. Put_String

(Phil -Windows(Which_Phil).
"Yum-yum (burp)");

Windows.NewLine(Phii_Windaws(WhichPhi2));

when Phil.Got_-One-Stick =>
Windows. Put_String

(Phil _Windows(whichPhil),
"First chopstick", &
MediumNatural'Image(HowLong));

Windows.NewLine(Philwindows(WhichPhiU);

when Phil.Got_-Other-Stick =>
Windows. Put_String

(Phil_-Windows(Winich_Phil),
"Second chopstick", &
Medium_-Natura~lImage(How_Long));

Windows.NewLine(PhilWindows(WhichPhil));

end case;

end ReportState;
or

terminate;
end select;

end loop;

-- An exception handler is not needed here.
end Headwaiter;

end Room;

178 Ada QUALITY AND STYLE

APPENDIX A
Map from Ada Language Reference Manual

to Guidelines

1. Introduction

1.1 Scope of the Standard
1.1.1 Extent of the Standard
1.1.2 Conformity of an Implementation with the Standard
1.2 Structure of the Standard
1.3 Design Goals and Sources
1.4 Language Summary
1.5 M ethod of Description and Syntax Notation 2.1.8
1.6 C lassification of Errors .. 5.9

2. Lexical Elements

2.1 Character Set
2.2 Lexical Elements, Separators, and Delimiters 2.1.1
2.3 Identifiers .. 3.1.1, 3.1.3, 3.1.4, 3.2,

5.2.1, 5.5.4, 8.1.1, 8.1.2
2.4 Num eric Literals .. 3.1.2, 3.2.5, 7.2.6
2.4.1 Decimal Literals
2.4.2 Based Literals
2.5 C haracter Literals .. 3.2.5
2.6 String Literals .. 2.1.1, 2.1.2, 2.1.4, 3.2.5
2.7 Com m ents .. 2.1.4, 2.1.7, 3.3, 5.2.1, 5.6.7,

5.6.8, 7.1.3, 7.1.5, 7.2.5, 8.3.5
2 .8 Pragm as .. 8.4 .2, 9 .1.1
2.9 R eserved W ords ... 3.1.3
2.10 Allowable Replacements of Characters

3. Declarations and Types 2.1.4, 2.1.6, 2.1.8, 4.1.4, 5.3

3 .1 D eclarations ... 3.2.1
3.2 Objects and Named Numbers 3.2.3, 3.2.5, 4.1.5, 7.2.6, 8.2.1
3.2.1 O bject D eclarations ... 4.1.6, 5.9.6
3.2.2 Number Declarations
3.3 Types and Subtypes 3.2.2, 3.4.1, 4.1.5, 7.2.7. 8.2.3, 9.1.5
3.3.1 T ype D eclarations .. 3.3.5

179

180 Ada QUALITY AND STYLE

3.3.2 Subtype Declarations 5.3.1, 5.5.1, 5.6.3, 5.7.2, 7.2.7, 9.1.5
3.3.3 Classification of Operations
3.4 D erived Types .. 3.4.1, 5.3.1, 7.2.7, Q.1.5
3.5 Scalar Types .. 3.4.1, 5.3.1, 5.5.1
3.5.1 Enum eration Types 2.1.4, 3.4.2, 5.6.3, 5.7.1
3.5.2 Character Types
3.5.3 Boolean T yp es ... 3.2.3
3.5.4 Integer Types .. 7.1.1, 7.1.2, 7.2.1, 7.2.5
3.5.5 Operations of Discrete Types
3.5.6 Real T yp es ... 7.1.1, 7.1.2, 5.5.6, 7.2.5
3.5.7 Floating Point Types .. 7.2.1, 7.2.2, 7.2.3
3.5.8 Operations of Floating Point Types
3.5.9 Fixed Point T yp es .. 7.1.1, 7.2.1
3.5.10 Operations of Fixed Point Types
3.6 A rray Types .. 5.3.2, 5.5.1, 5.5.2, 5.9.3,

8.2.2, 8.3.4, 9.1.3
3.6.1 Index Constraints and Discrete Ranges 5.5.2, 9.1.3
3.6.2 Operations of A rray Types 5.6.2
3.6.3 T he T ype String 2.1.1
3.7 Record Types 2.1.2, 5.4.1, 5.4.2, 5.4.3. 5.9.3
3.7.1 Discriminants

3.7.2 Discriminant Constraints

3.7.3 Variant Parts
3.7.4 Operations of Record Types
3.8 A ccess Types 5.4.3, 5.9.2, 6.1.3, 7.6.6, 7.7.3
3.8.1 Incom plete Type Declarations .. 5.4.3
3.8.2 Operations of Access Types
3.9 D eclarative Parts ... 2.1.4, 5.9.6

4. Names and Expressions

4 .1 N am es 3 .2 , 8 .1.1, 8 .1.2
4.1.1 Indexed Components

4 .1.2 S lice s . 5 .6 .2
4.1.3 Selected Components
4 .1.4 A ttrib u tes 8 .2 .4
4.2 L iterals 8.2.4
4.3 Aggregates
4.3.1 Record Aggregates ... 5.6.10
4.3.2 Array Aggregates
4.4 Expressions 2.1.1, 2.1.3, 2.1.5, 5.5, 5.5.3. 7.2.7
4.5 Operators and Expression Evaluation 2.1.1, 2.1.3,

5.5.3, 5.7.1, 5.7.2, 5.7.4, 7.2.7
4.5.1 Logical Operators and Short-circuit Control Forms 5.5.4, 5.5.5
4.5.2 Relational Operators and Membership Tests 2.1.1, 5.5.6, 5.7.5, 7.2,8
4.5.3 Binary Adding Operators .. 2.1.1, 5.7.4
4.5A4 Unary Adding Operators
4.5.5 M ultiplying O perators ... 9.1.5
4.5.6 H ighest Precedence Operators .. 5.5.3
4.5.7 Accuracy of Operations with Real Operands 5.5.6,

7.2.2, 7.2.3, 7.2.4, 7.2.5, 7.2.7

APPENDIX A 181

4.6 T ype C onversions .. 5.9.1

4.7 Qualified Expressions
4.8 A llocators ... 5.4.3, 6.1.3, 7.6.6

4.9 Static Expressions and Static Subtypes 3.2.5, 7.2.6, 8.2.1
4.10 U niversal Expressions ... 7.2.6

5. Statem ents .. 2.1.2, 2.1.6, 2.1.8, 3.3.6, 5.6

5.1 Simple and Compound Statements - Sequences of Statements 5.6.1

5.2 Assignment Statement ... 2.1.3, 5.6.2

5.2.1 Array Assignments

5.3 If Statem ents ... 2.1.5, 3.3.7, 5.6.1, 5.6.5

5.4 Case Statem ents .. 3.3.7, 5.6.1, 5.6.3

5.5 Loop Statements 5.1.1, 5.5.1, 5.6.1, 5.6.2, 5.6.4, 5.6.6, 7.4.2
5.6 Block Statements 3.3.7, 5.1.2, 5.6.1, 5.6.9, 5.8.4, 9.1.2

5.7 Exit Statem ents ... 5.1.3, 5.6.4, 5.6.5

5.8 Return Statem ents .. 5.6.8

5.9 G oto Statem ents ... 5.6.7, 5.8.1

6. Subprogram s .. 4.1.2

6.1 Subprogram Declarations 2.1.2, 3.2.4, 3.3.3.
4.1.1, 4.1.4, 4.1.5, 4.2.1, 4.3.1,

5.2.1, 5.6.6, 7.1.3, 7.1.4

6.2 Form al Param eter M odes 2.1.5, 5.2.4, 5.9.3

6.3 Subprogram Bodies 2.1.7, 3.3.4, 3.3.7, 5.1.4, 9.1.1

6.3.1 Conformance Rules

6.3.2 Inline Expansion of Subprogram s ... 9.1.1

6.4 Subprogram Calls 2.1.1, 4.1.3, 5.2.2, 5.6.6, 5.9.3
6.4.1 Param eter A ssociations .. 5.2.2, 5.9.8

6.4.2 D efault Param eters ... 5.2.2, 5.2.3

6.5 Function Subprograms 2.1.1, 3.2.4, 4.1.3, 4.3.1, 5.9.6

6.6 Parameter and Result Type Profile - Overloading of Subprograms 4.2.1,

5.7.3, 8.2.5

6.7 O verloading of O perators .. 5.7.5

7. P ackages .. 2 .1.2, 4.1.4, 4.1.5

7.1 Package Structure ... 4.2.1, 4.3, 7.1.5

7.2 Package Specifications and Declarations 2.1.7, 3.2.4, 3.3.3,
4.1.1, 4.1.6, 4.2.1, 4.2.2, 4.2.4, 4.3.1,

5.1.4, 7.1.3, 7.1.5, 8.2.6, 8.3.1

7.3 Package Bodies .. 2.1.7, 3.3.4,
4.1.!, 4.2.1, 4.3.1, 5.1.4, 5.9.1

7.4 Private Type and Deferred Constant Declarations 5.3.3

7.4.1 Private T yp es .. 5.3.3

7.4.2 Operations of a Private Type
7.4.3 Deferred Constants
7.4.4 Lim ited Types .. 5.3.3, 5.7.5, 8.3.4
7.5 Example of a Table Management Package
7.6 Example of a Text Handling Package

8. V isib ility R ules ... 4.2, 5 .7

182 Ada QUALITY AND STYLE

8.1 D eclarative R egion ... 4.2.3
8.2 Scope of D eclarations .. 4.1.6, 4.2.3, 7.6.6
8.3 V isibility 4.1.3, 4.1.4, 4.2.1, 4.2.3, 5.7.1, 5.7.3
8.4 U se C lauses .. 5.6.9, 5.7.1, 5.7.2
8.5 Renam ing Declarations ... 5.6.9, 5.7.1, 5.7 2
8.6 The Package Standard .. 3.2.2, 7.2.1
8.7 The Context of Overload Resolution ... 8.2.5

9 . T asks .. 4 .1.7, 4.2.4, 6, 7.4

9.1 Task Specifications and Task Bodies 2.1.7, 3.2.4, 3.3.7, 5.1.4,
6.1.1, 6.1.4, 6.3.4, 7.1.3, 8.4.2

9.2 Task Types and Task Objects .. 6.1.1, 6.1.2
9.3 Task Execution - Task Activation 6.1.3, 6.1.4, 6.1.5, 6.3.2.

7.4.1, 7.4.2, 7.4.5, 8.2.6
9.4 Task Dependence - Termination of Tasks 6.2.3, 6.3
9.5 Entries, Entry Calls, and Accept Statements 3.2.4, 4.3.1,

5.1.4, 5.2.1, 5.2.4, 5.6.1, 5.9.4,
6.1.4, 6.2, 6.3.1, 6.3.2, 7.4.5, 7.4.7

9.6 Delay Statements, Duration, and Time b.1.5, 6.2.5, 7.1.1, 7.4.2, 7 4.3
9.7 Select Statem ents 2.1.2, 5.6.1, 6.2.1, 6.2.6
9.7.1 Selective W aits 6.2.1, 6.2.2, 6.2.4, 6.2.5, 6.3.2, 7.4.4
9.7.2 Conditional Entry Calls .. 4.2.4, 6.2.5
9.7.3 T im ed Entry Calls 4.2.4, 6.1.5. 6.2.5
9 .8 Priorities 6.1.4, 7.4.5, 8.4.2
9.9 T ask and Entry A ttributes .. 6.2.3
9.10 A bort Statem ents .. 6.3.3, 7.4.6
9.11 Shared V ariables ... 6.2.4, 7.4.7
9.12 Example of Tasking

10. Program Structure and Compilation Issues 4.1.1

10.1 Compilation Units - Library Units 3.3.2, 4.1.1. 7.1.4
10.1.1 Context Clauses - W ith Clauses 2.1.2, 4.2.1, 4.2.3, 8.2.6. 8.4.1, 8.4.2
10.1.2 Examples of Compilation Units
10.2 Subunits of Compilation Units .. 4.1.1, 4.2.3
10.2.1 Examples of Subunits
10.3 Order of Compilation
10.4 T he Program Library .. 8.4
10.5 Elaboration of Library U nits .. 8.4.2
10.6 Program O ptim ization .. 8.4.4

11. Exceptions .. 4.3, 5.8, 7.5

11] 1 Exception Declarations 3.3.5, 4.3.1, 5.4.3, 7.5.2, 7.5.3
11.2 Exception Handlers 2.1.2, 4.3.1, 5.6.9, 5.8.1, 5.8.2. 5.8.3, 5.8.4,

6.2.2, 6.3.1, 6.3.4, 7.5.2, 7.5.3, 8.2.7
11.3 Raise Statem ents .. 4.3.1. 7.5.3, 8.2.3, 8.2.7
11.4 Exception Handling 4.3.1, 5.8.1, 5.8.2, 5.8.3, 5.8.4,

6.2.2, 6.3.4, 7.5, 8.2.7
11.4.1 Exceptions Raised During the Execution of Statements 5.8.1
11.4.2 Exceptions Raised During the Elaboration of Declarations 5.8.1
11.5 Exceptions Raised During Task Communication 5.8.1. 6.2.2

APPENDIX A 183

11.6 Exceptions and Optimization
11.7 Suppressing Checks .. 5.9.5

12. Generic Units

12.1 Generic Declarations .. 2.1.2, 3.2.4, 4.2.2,
8.1.1, 8.1.2, 8.1.3, 8.3.1, 8.3.2,
8.3.3, 8.3.4, 8.3.5, 8.4.1, 8.4.3

12.1.1 G eneric Form al O bjects .. 8.2.4, 8.2.6
12.1.2 Generic Form al T.'pes 8.2.2, 8.3.3, 8.3.4, 8.3.6
12.1.3 Generic Form al Subprogram s .. 8.3.6
12.2 G eneric B odies 8.2.7
12.3 G eneric Instantiation ... 2.1.2, 3.2.4, 5.2.2,

8.1.1, 8.2.4, 8.2.5, 8.3.2, 8.3.6, 8.4.4
12.3.1 Matching Rules for Formal Objects
12.3.2 M atching Rules for Formal Private Types 5.3.3, 8.3.4
12.3.3 Matching Rules for Formal Scalar Types
12.3.4 M atching Rules for Form al Array Types 8.2.2
12.3.5 Matching Rules for Formal Access Types
12.3.6 Matching Rules for Formal Subprograms
12.4 Example of a Generic Package

13. Representation Clauses and Implementation-Dependent Features 4.1.4, 7.6

13.1 Representation Clauses ... 7.6.1
13.2 L ength C lauses ... 5.4.3, 7.6.1
13.3 Enumeration Representation Clauses 3.4.2, 7.6.1
13.4 Record Representation Clauses 2.1.2, 7.6.1
13.5 A ddress C lauses .. 5.9 .4
13 .5 .1 Interrupts 4 .1.7 , 5 .9 .4
13.6 C hange of Representation .. 7.6.1
13.7 T he Package System ... 7.6.2
13.7.1 System-Dependent Named Numbers .. 7.4.3
13.7.2 Representation A ttributes ... 7.3.1
13.7.3 Representation Attributes of Real Types 7.2.3
13.8 M achine Code Insertions .. 7.1.5, 7.6.3
13.9 Interface to Other Languages 5.9.3, '1.1.5, 7.6.4, 7.6.7
13.10 Unchecked Programming
13.10.1 Unchecked Storage Deallocation 5.4.3, 5.9.2, 7.6.6
13.10.2 Unchecked Type Conversions .. 5.9.1- 7.6.7

14 . In p ut-O utp ut 7.7

14.1 External Files and File Objects
14.2 Sequential and Direct Files
14.2.1 File M anagem ent .. 7.7.1, 7.7.2
14.2.2 Sequential Input-O utput ... 5.9.7, 7.7.3
14.2.3 Specification of the Package Sequential_10
14.2.4 Direct Input-Output 5.9.7, 7.7.1. 7.7.3
14.2.5 Specification of the Package Direct_10
14.3 Text Input-Output ... 4.2.2
14.3.1 File Management ... 7.7.2
14.3.2 Default Input and Output Files

184 Ada QUALITY AND STYLE

14.3.3 Specification of Line and Page Lengths
14.3.4 Operations on Columns, Lines, and Pages
14,3.5 Get and Put Procedures
14.3.6 Input-Output of Characters and Strings
14.3.7 Input-Output for Integer Types
14.3.8 Input-Output for Real Types
14.3.9 Input-Output for Enumeration Types
14.3.10 Specification of the Package TextIO 3.2.2, 4.2.2

14.4 Exceptions in Input-Output
14.5 Specification of the Package 10_Exceptions
14.6 Low Level Input-Output ... 7.7.4
14.7 Example of input-Output

Annexes

A. Predefined Language Attributes 3.2.5, 3.4.2, 5.3.3, 5.5.1, 5.5.2,
6.2.3, 8.2.4

B. Predefined Language Pragmas 4.1.4, 5.9.5, 6.1.4, 6.2.4,
7.4.5, 7.4.7, 7.6.4, 9.1.1

C. Predefined Language Environment 3.4.1, 5.7.1, 6.1.5,
7.1.1, 7.1.6, 7.2.1, 7.5.1, 7.5.2, 7.6.3

Appendices

D. Glossary
E. Syntax Summary
F. Implementation-Dependent Characteristics 4.1.4, 5.4.1,

7.1.1, 7.1.2. 7.1.3, 7.1.5, 7.1.6.

7.2.1, 7.2.4, 7.4.3, 7.6.2, 7.6.3, 7.6.5, 7.6.8

REFERENCES

AIRMICS Software Reuse Guidelines, ASQB-GI-90-015. U.S. Army Institute
1990 for Research in Management Information, Communications, and

Computer Sciences.

Anderson, T. and R.W. Safe Programming. BIT (Tidscrift Nordisk for Informations
Witty behandling) 18:1-8.
1978

ARTEWG Catalogue of Ada Runtime Implementation Dependencies, draft
1986 version. Association for Computing Machinery, Special Interest Group

for Ada, Ada Run-Time Environments Working Group.

Baker, Henry G. "A Heavy Thought..." Ada Letters. 11,2:45.
1991

Barnes, J.G.P. Programming in Ada. third edition. Reading, MA.: Addison-Wesley.
1989

Booch, G. Software Engineering with Ada. second edition. Menlo Park, CA: The
1986 Benjamin/Cummings Publishing Company, Inc.

1987 Software Components with Ada - Structures, Tools and Subsystems.
Menlo Park, California: The Benjamin/Cummings Publishing
Company, Inc.

CECOM CECOM "Final Report -- Catalogue of Ada Runtime Implementation
1989 Dependencies," CIN; C02092JNBOOO1.

Charette, R.N. Software Engineering Environments Concepts and Technology.
1986 Intertext Publications Inc. New York: McGraw-Hill Inc.

Cohen, N.H. Ada as a Second Language. New York: McGraw-Hill Inc.
1986

Conti, R.A. Critical Run-Time Design Tradeoffs in an Ada Implementation.
1987 Proceedings of the Joint Ada Conference, Fifth National Conference

on Ada Technology and Washington Ada Symposium. pp. 486-495.

185

186 Ada QUALITY AND STYLE

Department of Defense Reference Manual for the Ada Programming Language.
1983 ANSI/MIL-STD-1815A.

Edwards, S. An Approach for Constructing Reusable Software Components in Ada,
1990 IDA Paper P-2378. Institute for Defense Analyses.

Foreman, J. and Ada Adoption Handbook: A Program Manager's Guide. Version 1.0,
J. Goodenough CMU/SEI-87-TR-9 ESD-TR-87-1 10. Software Engineering Institute.
1987

Gonzalez, Dean W. "'=' Considered Harmful," Ada Letters. 11,2:56.
1991

Goodenough, J., and The Priority Ceiling Protocol: A Method for Minimizing the Blocking
L. Sha of High Priority Ada Tasks, Tech. Rep. SEI-SSR-4. Software
1988 Engineering Institute.

Griest "Limitations on the Portability of Real Time Ada Programs,"
1989 Proceedings of the 1989 Tri-Ada conference, Tom Griest.

Honeywell A Guidebook for Writing Reusable Source Code in Ada. Corporate
1986 Systems Development Division. Version 1.1. CSC-86-3:8213.

IEEE Dictionary IEEE Standard Dictionary of Electrical and Electronics Terms.
1984 ANSI/IEEE Std 100-1984.

MacLaren, L. Evolving Toward Ada in Reai Time Systems. ACM Sigplan Notices.
1980 15(11):146-155.

Matthews, E.R. Observations on the Portability of Ada I/O. ACM Ada Letters.
1987 VII(5):100-103.

Melliar-Smith, P.M. and Software Reliability: The Role of Programmed Exception Handling.
B. Randell ACM Sigplan Notices. 12(3):95-100.
1987

NASA Ada Style Guide. Version 1.1, SEL-87-002. Goddard Space Flight
1987 Center: Greenbelt, MD 20771.

NASA Ada Efficiency Guide. Technical Note 552-FDD-91/068ROUDO.
1992 NASA, Goddard Space Flight Center: Greenbelt, MD 20771.

Nissen, J. and P. Wallis Portability and Style in Ada. Cambridge University Press.
1984

Pappas, F. Ada Portability Guidelines. DTIC/NTIS #AD-A160 390.
1985

Pyle, I.C. The Ada Programming Language. second edition. UK.: Prentice-Hall
1985 International.

Rosen, J. P. In Defense of the 'Use' Clause. ACM Ada Letters. VII(7):77-81.
1987

REFERENCES 187

Ross, D. The Form of a Passive Iterator. ACM Ada Letters. IX(2):102-105.
1989

Schneiderman, B. Empirical Studies of Programmers: The Territory, Paths and
1986 Destinations. Empirical Studies of Programmers. ed. E. Soloway and

S. lyengar. pp. 1-12. Norwood, NJ: Ablex Publishing Corp.

Soloway, E., J. Pinto, Studying Software Documentation From A Cognitive Perspective: A
S. Fertig, S. Letovsky, Status Report. Proceedings of the Eleventh Annual Software
R. Lampert, D. Littman, Engineering Workshop. Report SEL-86-006, Software Engineering
and K. Ewing. Laboratory. Greenbelt, MD:NASA Goddard Space Flight Center.
1986.

United Technologies CENC Programmer's Guide. Appendix A Ada Programming
1987 Standards.

Volz, R.A., Mudge, Naylor Some Problems in Distributing Real-time Ada Programs Across
and Mayer. Machines. Ada in Use, Proceedings of the Ada International
1985 Conference. pp. 14-16. Paris.

Wheeler, David A. Analysis and Guidelines for Reusable Ada Software. IDA Paper P-2765.
1992 Alexandria, Virginia:Institute for Defense Analyses.

188 Ada QUALITY AND STYLE

BIBLIOGRAPHY

ACVC (Ada Compiler Validation Capability). Ada Validation Facility, ASD/SIOL. Wright-Patterson Air
Force Base, OH.

AIRMICS. 1990. Software Reuse Guidelines, ASQB-GI-90-015. U.S. Army Institute for Research in
Management Information, Communications, and Computer Sciences.

Anderson, T. and R. W. Witty. 1978. Safe Programming. BIT (Tidscrift Nordisk for Informations
behandling) 18:1-8.

ARTEWG. November 5, 1986. Catalogue of Ada Runtime Implementation Oeyendencies, draft version.
Association for Computing Machinery, Special Interest Group for Ada, Ada Run-Time
Environments Working Group.

Bardin, Thompson. Jan-Feb 1988. Composable Ada Software Components and the Re-Export Paradigm.
ACM Ada Letters. VIII(l):58-79.

Bardin, Thompson. March-April 1988. Using the Re-Export Paradigm to Build Composable Ada Software

Components. ACM Ada Letters. VIII(2):39-54.

Barnes, J. G. P. 1989. Programming in Ada. third edition. Reading, MA.: Addison-Wesley.

Booch, G. 1987. Software Components with Ada - Structures, Tools and Subsystems. Menlo Park, CA.:
The Benjamin/Cummings Publishing Company, Inc.

Booch, G. 1986. Software Engineering with Ada. second edition. Menlo Park, CA.: The
Benjamin/Cummings Publishing Company, Inc.

Brooks, F. B. 1975. The Mythical Man-Month. Essays on Software Engineering. Reading.
MA: Addison-Wesley.

CECOM. 1989. CECOM "Final Report -- Catalogue of Ada Runtime Implementation Dependencies,"
CIN; C02092JNBOOO1.

Charette, R. N. 1986. Software Engineering Environments Concepts and Technology. Intertext Publications
Inc. New York: McGraw-Hill Inc.

Cohen, N. H. 1986. Ada as a Second Language. New York: McGraw-Hill Inc.

Conti, R. A. March 1987. Critical Run-Time Design Tradeoffs in an Ada Implementation. Proceedings of
the Joint Ada Conference, Fifth National Conference on Ada Technology and Washington Ada
Symposium. pp. 486-495.

Cristian, F. March 1984. Correct and Robust Programs. IEEE Transactions on Software Engineering.
SE-10(2):163-174.

189

190 Ada QUALITY AND STYLE

Department of Defense, Ada Joint Program Office. 1984. Rationale for the Design of the Ada Programming
Language.

Department of Defense, Ada Joint Program Office. January 1983. Reference Manual for the Ada
Programming Language. ANSI/MIL-STD- 1815A.

Edwards, S. 1990. An Approach for Constructing Reusable Software Components in Ada, IDA Paper
P-2378. Institute for Defense Analyses.

Foreman, J. and J. Goodenough. May 1987. Ada Adoption Handbook: A Program Manager's Guide.

Version 1.0, CMU/SEI-87-TR-9 ESD-TR-87-i10. Softwalre Engineering Institute.

Gary, B. and D. Pokrass. 1985, Understanding Ada A Software Engineering Approach. John Wiley & Sons.

Goodenough, J. B. March 1986. A Sample of Ada Programmer Errors. Unpublished draft resident in the
Ada Repository under file name PD2: <ADA. EDUCATION>PROGERRS. DOC. 2.

Herr, C. S. August 1987. Compiler Validation and Reusable Software. St. Louis: a Report from the CAMP
Project, McDonnell Douglas Astronautics Company.

International Workshop on Real-Time Ada Issues. 1987. ACM Ada Letters. VII(6). Mortonhampstead,
Devon, U.K.

International Workshop on Real-Time Ada Issues 1I. 1988. ACM Ada Letters. VIII(6). Mortonhampstead,
Devon, U.K.

Kernighan, B. and P. J. Plauger, 1978. The Elements of Programming Style. New York: McGraw-Hill, Inc.

Matthews, E. R. September, October 1987. Observations on the Portability of Ada 1/O. ACM Ada Letters.
VII (5): 100-103.

MacLaren, L. November 1980. Evolving Toward Ada in Real Time Systems. ACM Sigplan Notices.
15(11):146-155.

Melliar-Smith, P. M. and B. Randell. March 1987. Software Reliability: The Role of Programmed
Exception Handling. ACM Sigplan Notices. 12(3):95-100 .

Mowday, B. L. and E. Normand. November 1986. Ada Programming Standards. General Dynamics Data
Systems Division Departmental Instruction 414.717.

NASA. May 1987. Ada Style Guide. Version 1.1, SEL-87-002. Goddard Space Flight Center: Greenbelt,
MD 20771.

NASA. 1992. Ada Efficiency Guide. Technical Note 552-FDD-91/068ROUDO. NASA, Goddard Space
Flight Center: Greenbelt, MD 20771.

Nissen, J. C. D., P. Wallis, B. A., Wichmann, et al. 1982. Ada-Europe Guidelines for the Portability of Ada
Programs. ACM Ada Letters. 1(3):44-61.

Nissen, J. and P. Wallis. 1984. Portability and Style in Ada. Cambridge University Press.

Pappas, F. March 1985. Ada Portability Guidelines. DTIC/NTIS #AD-A160 390.

Pyle, I. C. 1985. The Ada Programming Language. second e-lition. UK:Prentice-Hall International.

Rosen, J. P. November, December 1987. In Defense of the 'Use' Clause. ACM Ada Letters. VII(7):77-81.

Ross, D. March-April 1989. The Form of a Passive Iterator. ACM Ada Letters. IX(2):102-105.

Rymer, J. and T. McKeever. September 1986. The FSD Ada Style Guide. IBM Federal Systems Division
Ada Coordinating Group.

BIBLIOGRAPHY 191

Schneiderman, B. 1986. Empirical Studies of Programmers: The Territory, Paths and Destinations.
Empirical Studies of Programmers. ed. E. Soloway and S. Iyengar. pp. 1-12. Norwood, NJ: Ablex
Publishing Corp.

SofTech Inc. December 1985. ISEC Reusability Guidelines. Report 3285-4-247/2. Also US Army
Information Systems Engineering Command. Waltham MA.

Soloway, E., J. Pinto, S. Fertig, S. Letovsky, R. Lampert, D. Littman, K. Ewing. December 1986. Studying
Software Documentation From A Cognitive Perspective: A Status Report. Proceedings of the
Eleventh Annual Software Engineering Workshop. Report SEL-86-006, Software Engineering
Laboratory. Greenbelt, MD:NASA Goddard Space Flight Center.

Stark M. and E. Seidewitz. March 1987. Towards A General Object-Oriented Ada Lifecycle. In
Proceedings of the Joint Ada Conference. Fifth National Conference on Ada Technology and
Washington Ada Symposium. 213-222.

St.Dennis, R. May 1986. A Guidebook for Writing Reusable Source Code in Ada -Version 1.1. Report
CSC-86-3:8213. (Jolden Valley, MN: Honeywell Corporate Systems Development Division.

United Technologies. February 9, 1987. CENC Programmer's Guide. Appendix A Ada Programming
Standards.

VanNeste, K.F. January/February 1986. Ada Coding Standards and Conventions. ACM Ada Letters.
VI(1):41-48.

Volz, R. A., Mudge, Naylor and Mayer. May 1985. Some Problems in Distributing Real-time Ada Programs
Across Machines. Ada in Use, Proceedings of the Ada International Conference. pp. 14-16. Paris.

Wheeler, David A. August 1992. Analysis and Guidelines for Reusable Ada Software. IDA Paper P-2765.
Alexandria, Virginia:Institute for Defense Analyses.

192 Ada QUALITY AND STYLE

INDEX

Symbols abstract data, shared, 92

abstract data object. 139
'Base, 63 abstract data type. 44, 139
'Callable. 99 abstract state machine. 139

'Constrained. 63 abstraction. 47, 83

'Count, 99 affect on naming. 128

'First, 66, 67 complete functionality, 136
data modeling. 63

'Image, 36 enhanced by subprogram, 42

'Last, 66. 67 includes exception. 51
name. 22

'Length, 67 protect with exception handler, 82

'Pos, 36 supported, 41
using constrained subtype. 72

'Pred, 36 using nested record. 65

'Range. 67 using private type. 63

'Size, 63
using types. 61

'StorageSize, 116 accept
S 1blocking, 96

'Succ, 36 causing deadlock, 105

"Terminated, 99, 105 closed, 97
end statement, 57

'Val, 36 indentation. 8
'Value, 36 minimize, 103

rendezvous, 96

access, 65

A affects equality, 80
I/O portability, 123

abbreviation, 19, 20 portability, 121

capitalization, 18 access function, 45
renames clause, 79reusability, 12 accuracy

floating point, 114
abnormal termination, 106 fraction, 18

abort greater, 113

affects 'Count, 100 of constant, 115

dynamic task, 94 of relational expression, 69

portability, 118 portability, 115

statement, 106 acronym, capitalization, 18

193

INDEX 194

active iterator, 142 slice, 71

actual parameter, 58 unconstrained. 131

anonymous. 62 assignment
for private type, 63

adaptability, 136 import for limited type. 145
address clause, 85 reduced by aggregate, 77

adjective, for boolean object. 21 assumption. 131

aggregate, 77 documented through generic parameter, 146

function calls in, 43 asynchronous
'Count, 99

algorithm entity, 91
comment in header, 29
concurrent, 45 attribute
encapsulated in generic, 137 'Base, 63portability. 120 'Callable, 99

'Constrained.
63

alias 'Count, 99
of dynamic data, 65 'First, 66, 67
of dynamic task, 94 'Image. 36
using address clause. 85 'Last, 66, 67

alignment 'Length, 67
and nesting, 70 'Pos, 36
declaration, 10 Pred, 36
parameter modes, 11 'Range, 67
vertical, 5, 9, 10, 11 'Size, 63

'Storage_Size, 116
allocate 'Succ, 36

dynamic data. 65 Trerminated, 99
dynamic task, 93 'Val, 36

ambiguous, use clause, 78 'Value, 36
implementation-defi w , 121

anonymous type, 62 in generic, 132
task, 92

anticipated change
adaptability, 136 B
anonymous task, 93
comment in header, 29 binary operator, spacing, 5
encapsulate, 44 binding, 47
parameter mode, 60 blank lines, 12

apostrophe, spacing, 6 for goto statement, 75
application domain for label, 75

abbreviation, 19 return statement, 75

abbreviation affects reusability, 129 block
application specific, literal, 24 indentation, 7

localizing exception, 82
application-independent, name, 128 marker comment. 34, 35

name, 56
arraynetn,5

anonymous type, 62 nesting, 56attribute, 67 performance, 154
attrbute 67statement, 76

function calls in initialization, 43 tateme 76
parallel, do not use, 64 to clause 78
parameter passing, 85, 131 use clause, 78
performance, 154 blocking
range, 67 not tiusy waiting, %

195 Ada QUALITY AND STYLE

with priority. 9S exception, 30

body exception handler for other. ý2

comment, 29 header, 25

end statement, 57 file, 26

header, as pagination, 13 for group of routines. 28
hide interface to foreign code, 85 purpose. 28
hide UncheckedConversion, 83 when to omit, 30
hide Unhecaedonbersion, 83 label, 75
name ',ýpeated in begin, 34 machine code insert. 120
task, 106 marker, 34

boolean minimize, 24
function, name, 22 numerical analysis, 115
object, name, 21 program specification. 26

boundary value, 61 reduced by naming. 20. 24. 56. 57. 58
reduced by static expression. 24

busy wait, 95 return statement. 75
created with priorities, 103 statement, 32
portability. 117 tasking implementation, 49

to document portability, 111
trailing, alignment. 10

C type. 30
commu~nication. %•

Calendar, portability, 117 cmplcxict. 103

capitalization, 18 using shared variable, 101
in numeric literal, 17 inpilation

case statement, 71 affected ly Inline. 153

indentation. 7 conditional. 149

marker comment, 34 separate, 41

nesting, 70 complex communication. 103
use constrained subtype. 72 complex data. comment. 30

clauselades 8concurrency. 91
address, 85 See also task
context affects exception behavior, 81

minimize, 46

visibility, 47 concurrent algorithm. 45. 91

length. for dynamic data. 65 conditional compilation, 149
renames, 79 conditional entry
representation, 116, 119, 120 callo 50o 102

instead of enumeration, 36 indentation, 8
use, 78, 79

closing file. portability. 123 conditional expression, in while loop, 72

code, formatting. 5 configuration control, 44

constant. 23
declaration, alignment, 10

colon in static expression. 131

alignment, 10, 12 to avoid use clause. 79
spacing, 6 to reduce nesting. 70

comma, spacing, 6 type of. 24

constraint, 36, 60comment, 17, 24

body header, 29 constraint check

data, 30 for generic formal. 133

distinct from code, 33 performance. 155

do not repeat. 30 Constraint_Error, portability. 119

195

INDEX 196

context declaration
dependency, 46 alignment, 10
of exceptions, 50 anonymous task, 93
to shorten names, 20 array size, 131

context clause blank lines, 12
contextaclause

generic needs elaboration, 148 constant, 23

indentation, 8 constrained subtype, 72
minimize, 46 digits, 113

per line, 14 exception, 50

reduced using generic parameter, 147 floating point, 114

visibility, 47 function call in, 85
grouping, 44

continuation condition, for while loop, 72 hiding, 79
continuation line, indentation, 6, 7. 9 minimize, 46

named number, 23
conversion per line, 14

loss of precision. 115 range. 113
of a private type, 63 record, for heterogeneous data, 63
rational fraction, 18 renames, 20, 78, 79
type, 61 type, 20, 35
unchecked, 83, 122 variable, 45

copyright notice, 26 within block, 76

coupling default mode, 60

data, 45 default parameter, 59
due to pragma, 148 delay
reduced using generic parameter, 147 drift, 96

cyclic activity, 45 in selective wait. 102
inaccurate, 95

cyclic executive, termination, 106 portability. 117

statement, 95
to avoid deadlock, 105

D delimiter. spacing, 5

dangling reference, 65 dependency
affects reusability, 147

data comment about, 27
abstract type, 139 context, 46
comment, 30 reduced using generic parameter, 148
coupling, 45 derived type, 35, 60
dynamic, 65
grouped in package, 44 design
in algorithm, 137 for reusability. 127
iterator for complex, 142 impact of concurrency, 91
protected, 101 impact of typing. 36
representation, 120 impact on nesting. 70
shared, 45, 100 uses data representation, 120
structure, 63 digits declaration, 113
Unchecked-Cc iersion. 83 digeclrio, 11Direct_JO, 86

data-driven program, 150 import private type. 147

dead code, 149 discrete, affects equality, 80

deadlock, 49 discriminant, of a private type, 63
eliminate, 95 documentation

deallocation, 65 exception in abstraction, 50

197 Ada QUALITY AND STYLE

generic formal parametcr, 030 call, 49
hidden task, 134 avoiding TaskingError, 99
infinite loop, 75 named association, 58
invalid state, 135 conditional. 50, 102
object value, 21 default parameter, 59
of assumption, 131 exceptions raised in, 50
of implementation dependency, 112 hiding, 49
of iterator behavior, 142 indentation, 8
of machine code, 120 interrupt, 85
of numerical analysis, 115 minimize, 104
of system call, 122 minimize accepts, 103
portability, II1 name, 22
table-driven code, 151 parameter list, 58
using named number, 131 parameter mode, 60

drift, delay, 96 queue
'Count, 99

Duration, 110 not prioritized. 94
portability, 117 timed, 50, 102

affects 'Count, 100dynamic data, 65

adaptability, 136 enumeration
deallocation, 84 alignment, 10, 11

in case statement, 71
dynamic storage, 116 literal. 78

dynamic task, 93 type, 36

equality
for private type, 63

E import for limited type, 145
overload operator, 80

Elaborate, 86 erroneous execution. 83
when to use, 148 not portable, 109

elaboration, 85 error
of value, 23 as an exception, 50

else clause unrecoverable, use exception, 51

comment, 34 evaluation order
nesting, 70 parenthesis, 67

eise part select statement, 117

in selective wait, 102 exception. 50, 80
open alternative, 98 avoiding. 81
to avoid deadlock, 105 cause, 82

elsif clause, nesting, 70 comment, 27, 30
ConstraintError, portability, 119

encapsulation, 44 declaration, 50
implementation dependency, 112, 119 do not propagate, 50
of algorithm in generic, 137 do not raise, 50
of synchronization code, 101 handler, 50, 81, 82
supported, 41 for StorageError. 65

in block, 76
end statement in task body, 97. 106

name, 57 reusability, 134
pagination, 13 to avoid termination, 104

entry implementation-defined, 82. 119
address clause, 85 in initialization, 86
attribute, 99 keep error separate, 51

197

INDEX 198

name, 50 flag
Numeric_Error, portability, 119 in complex loop, 73
part of abstraction, 51 in while loop, 73
portability, 118 naming, 68
predefined, 82, 118 floating point
Program_Error, 97

erroneous execution, 83 accuracy, 114, 115
propagation, 82, 83, 134 affects equality, 80reusability, 134 arithmetic, 114
Storage_Error, 65 in relational expression, 69supress , 85 model, 114, 115
suppress, 85 precision, 110, 114
TuskinLEdfor, 8 9 relational expression, 115
user-defined, 82

execution pattern, % flow of control, 81

portable, 117 for loop, 72
execution speed, 153 indentation, 7

is bounded, 75

exit statement, 57, 72, 73 foreign code, 85
conditional, 69
in loop, 72 Form, parameter in predefined 1/0, 123

export, overloading in generic, 134 formal parameter. 58

expression, 66 anonymous, 62
aggregate, 77 generic, 130

alignment. 9, 11 name, 58

evaluation, portability, 115 formatter, 6, 9, 10, 11, 12, 13, 14, 15, 17, 19
function calls in, 43 FORTRAN, 64
logical, 68 equivalence, 85
nesting, 69
numeric, 113 fraction, 18
order dependency, 87 free list, 66
parenthesis, 67
relational. 68, 69 function
slice, 71 access, 45
spacing, 6 body, indentation, 8
static, 23, 130 call
universalreal, 115 in declaration, 85
use named association, 58 named association, 58

recursive, 74
spacing, 6

default parameter, 59
end statement, 57
generic, 137, 147

family of parts, 149 Inline, 153

file interrogative, to avoid exception, 50

closing, 123 name, 22

header, 26 overload, 79

naming conventions, 41 parameter list, 58

organization, 41 procedure versus, 43
return, 75

finalization, complete functionality, 136 side effect, 43

fixed point specification, indentation, 8

in relational expression, 69 to reduce nesting, 70

precision, 110 functionality, complete, 136

199 Ada QUALITY AND STYLE

G reusability, 128
type, 20

garbage collection use of underscore, 17
of dynamic data, 65 visibility, 46

UncheckedDeallocation, 84 if statement

generic, 137 avoid exit, 73
abstract data object, 139 indentation, 7
abstract data type, 139 marker comment, 34

instance, indentation, 8 nesting, 70

name, 22, 128 positive name, 68

named association, 58 immediately, undefined. 103
package, 47, 134 implementation
parameter, 130 added feature, 113

accessed within task, 134 comment in header, 29
indentation, 8 encapsulate decisions, 44
to reduce coupling, 147 hide detail, 46

robustness, 132
subtype in formal, 132 implementation dependent, 119
to encapsulate algorithm, 137 actual limit, 111
when formal raise exception, 134 encapsulation, 112

global data, access, 46 global assumptions, 110

global effect, comment, 27 storage specification, 116
tentative rendezvous, 103goto, 75

simulated by exception, 81 implementation-defined
attribute, 121

guard exception, 82, 119
causing Program_Error, 97 pragma, 121
evaluation order, 117 System constant. 120
nonlocal variable, 100 UncheckedConversion, 84
referencing 'Count, 100 in, 60

guideline, violation, 24 alignment, 12

in out, 60
for limited type, 145
used in generic formal, 132

header, file, 26 incremental scheme, to improve performance, 155,
156

heterogeneous data, 63 indentation, 6

hidden task, 48, 134 affects abbreviation, 20
avoid Priority, 148 of declarations, 10

hiding, declarations, 79 inequality, for private type. 63

horizontal spacing, 5 infinite loop, 74

infix operator, 78, 79

information hiding, 41, 44
aids adaptability, 136

identifier effects exception handling. 51

abbreviation, 19, 129 enforced through visibility, 46

capitalization, 18 using iterator, 144

constant, 23 using private type. 63

naming convention, 20 initialization. 85
numeric, 23 in declaration. alignment, 10
object, 21 performance, 154

199

INDEX 200

procedure, 136 limited private type, 62
Inline, improves speed, 153 equality, 80

1/0 difficult, 147

input/output versus private, 145
LowLevel_10, 123 line
on access type, 123 continuation, indentation, 6
portability, 122 length, 15

instantiation multiple, 14

name, 22, 128 statements per, 14

named association, 58 linear independence, 24
reusability, 137 literal

Integer, portability, 110 avoid in generic, 132
Interface enumeration, 78

portability, 120 linear independence of, 23
poforaignlty u , 10 numeric, 17, 66, 67
to foreign language, 121 self-documenting. 24

interface string, 5
access to device, 91 use named association, 58
comment, 27 localize
implementation-defined exception, 119 declaration, 76
minimize, 46 implementation dependency, 112
parameter list, 58 scope, 78
to a device, 44, 63, 85, 123
to device data, 120 logical operator, 68

to foreign code, 85, 120, 121 loop, 72
undocumented. 47 array slices, 71

interrupt bound, 74
enterupt 8busy wait, 95, 103
entry, 85 conditional exit. 69

implementation dependent, 112 exit, 73
scheduling portability, 118 ei,7

using relational expression, 69

interval, delay, 96 indentation, 7

iteration
infinite, 74

bound, 74 marker comment, 35
boun, 74name, 55, 57

using loop statement, 72 nesting, 55, 57

iterator, 142 LowLevel_10, portability, 123

lower case, 18

L
M

label, 75
delimiter, 6 machine code, not portable, 120
indentation, 7 machine dependency, encapsulated, 44

late initialization, 154 main program, 112

length, line, 15 marker comment, 34

length clause, for dynamic data, 65 membership test, of a private type. 63

library memory management
binding, 47 of dynamic data, 65
reuse, 79 of task, 94
separate compilation, 41 UncheckedDeallocation, 84

201 Ada QUALITY AND STYLE

mod, performance, 155 nesting, 69

mode affects abbreviation, 20

alignment, 11 block, 56
control structure. 70

explicit, 6expression, 69

model indentation, 6
floating point, 115 initialization exception, 86
task, 91 loop, 55, 57

model interval package, 47

affects equality, 80 record, 64

affects relational expression, 69, 116 new, as an allocator, 65

modularity, 44 non-terminating, tasks, 105

multiple return statement, 76 normal termination, 105

multiprocessor, 45, 92 noun
as function name, 22

mutual exclusion, and priority, 95 as identifier, 21
for record component, 21
to describe abstraction, 22

N numeric
conversion, 18

Name, parameter in predefined I/O, 123 encoding. 36

name, 20 expression, 113

abbreviation, 19, 129 in relational expression, 69

block, 56 literal. 17, 66, 67

boolean, 68 named, 23

capitalization, 18 type, 113

convention, 20 NumericError, portability, 119

end statement, 57
flag, 68
formal parameter, 58 0
fully qualified, 20, 79
loop, 55, 57 object

nested record, 64 identifier, 21

number, 23 initialization, 85

object, 21 name, 21

overloading, in generic, 134 operating system, dependence. 122
predefined, 35 operator
program, 22 alignment. 9. 10
qualified, 47 equality, 80
repeated in begin, 34 infix, 78
repeated in header, 26, 29 logical, 68
reusability, 128 mod, 155
simple, 17 overload, 80
state, 68 precedence, 6, 67, 70
subtype, 35 rem, 155
type, 20, 35 renamed, 79
use positive form, 68 short circuit, 68

named association, 58, 59 spacing, 5

in aggregate, 77 optimizing compiler, values not checked, 86

named number, 23, 115, 130 optional parameter, 58
to specify priority, 149 order

negative logic, in name, 68 of arguments in aggregate. 77

201

INDEX 202

of elaboration, 149 specification, 46, 47
of evaluation, 43, 68, 87 exception declaration, 50

in expression, 67 file name, 41

others clause indentation, 8

in case statement, 71 pagination, 13

in exception, 50, 81 portability, 112
in taskptbod, 106 8Standard, 35
in task body, 106 predefined numeric type, 113

out, 60 System
alignment, 12 portability, 120
not for limited type, 145 portability of Tick, 117

Text 10, 47
overload vendor supplied, 113

equality, 80
in generic, 134 pagination, 13, 34

operator, 80 paragraphing, 7
subprogram, 79type name, 35 parameter
use clause, 78 adding to list. 59

aggregate, 77
alignment, 11
anonymous, 62

P array, 131
declaration, per line, 14

package, 44 default value, 59

abstract data type, 139 for main program, 112

body formal name. 58

comment, 29 generic formal, 130

file name, 41 generic reduces coupling, 147

for different environment, 112 in predefined I/0, 123

hide UncheckedConversion, 83 list, 58

hide UncheckedDeallocation, 84 mode, 60

indentation, 8 alignmenL. 11

multiple implementation, 42 name in header, 27

using pragma Interface, 121 named association, 58

Calendar, portability, 117 number, 46

cohesion, 44 optional, 58

comment, 26 passing mechanism, 84

coupling, 45 with exception, 135

dependency, 47 profile, 79

DirectlO, 86 size, 131

document non-portable, 111 unmodified with exception, 134

end statement, 57 parameter type, alignment, 12
generic. 47, 137, 147 parenthesis, 67
implementation-defined exception, 119 alignment, 11
interface, 112 spacing, 6
LowLevel_10, 123 superfluous, 6
mmunimze interface, 46
name, 22 parser, use table-driven program, 150

named in use clause, 78 part family, 149
nested, 47
predefined passive iterator, 142

type name, 20 performance, 153
vendor supplied feature, 113 access to data, 45

private, 62 comment in header, 27

Sequential_10, 86 named number, 24

203 Ada QUALITY AND STYLE

period, spacing, 6 Priority. 94
can create busy wait, 103

periodic activity, 96 not for hidden task, 148

persistent object. 47 portability, 118

plain loop, 72 priority inversion, 95

pointer
private type, 62

See also access
equality. 80
for numeric type, 113

to task, 94 versus limited, 145

polling, 95 problem domain, model with task, 91

portability, 117 procedure

portability, 15, 44, 109 as main program, 112

comment in header, 29 call

execution pattern, 96 named association, 58

of relational expression, 69 recursive, 74

order dependency, 87 default parameter, 59

principles, 109 end statement, 57

positional association, 59, 77 generic, 137, 147
inline, 153

positive logic, naming, 68 name, 22
overload, 79

pragma parameter list, 58
Elaborate, 86, 148 parameter mode, 60
implementation-defined, 121 return, 75
Inline, 153 to reduce nesting, 70
Interface versus function. 43

portability, 120 processor
to foreign code, 121 multiple, 92

introduce coupling, 148 virtual, 92
Priority, 94, 148

portability, 118 program

Shared, 101 body, indentation, 8

portability, 118 grouping, 44

Suppress, 85 name, 22
Sppreedee of opagination. 13

precedence of operator, 67, 70 termination, 82, 106

precision visibility, 47

fixed point, 110 ProgramError, 97

floating point, 110, 114 erroneous execution, 83

predefined project

exception abbreviation, 20

do not raise, 50 entry name, 23

handle, 82 prologues, as pagination, 13

portability, 118 propagation, 82

1/0 parameter, 123 exception, 83, 134

predefined type, 35
as a name, 20 Q
numeric, 113
String index, 114 qualified name, 47, 78, 79

predicate
queue, entry not prioritized, 95

as function name, 22
for boolean object, 21 R

preemptive scheduling. 118 race condition. 49, 105

prioritized activity, 45 attribute. 99

203

INDEX 204

in tentative rendezvous, 103 of non-terminating program, 106
priority, 95 renames clause, 79
with shared variable, 101 robust software, 130

radix, 17 run time system, dependence, 122
precision, 115 precsion 115runaway task, 106

raise statement, in abstraction, 50

range
constraint, 60 S
declaration, 113Duration, 110 safe numbers, for floating point, 114

in case statement, 71 safe programming, 75
scalar types, 35 scheduling
values, 66 algorithm

real operand, in relational expression, 69 affected by hidden task, 134

recompilation, reduced by separate file. 42 portability, 118
delay, 96

record task, 106
assignment, 77 using priority, 95
component, name, 21 scientific notation, 17
heterogeneous data, 63
indentation, 8 scope
map to device data, 63 access type, portability, 121
nesting, 64 exception, 50
parameter passing, 85 minimize, 47
with access type component, 65 use clause, 78

recursion, bound, 74 select statement
blocking, 96

relational expression, 68, 69 minimize, 103
portability, 115 portability, 117

rem, performance, 155 to provide normal termination, 105

renames clause, 20, 78, 79 selected component, of a private type, 63

declare in block, 76 selective wait
for a type, 36 closed alternatives, 97

rendezvous efficient, 96
efficient, 96 indentation, 8

exception during, 97 with else, 102

instead of shared variable, 100 semicolon, spacing, 6
tentative, 102 sentinel value, 61
versus shared variable, 118
with exception handler, 104 separatecompilation, 41

repeat until, how to simulate, 73 indentation, 8

representation clause to reduce visibility, 48
evaluate during porting, 120 separation of concerns, 46
for device data, 64 Sequential_lO, 86
indentation, 9 import private type, 147
instead of enumeration, 36
portability, 116, 119, 120 Shared, 101

portability, 118
reserved word, capitalization, 18 shared data, 45
return statement, 75 hidden task in generic, 134

reusability, 127 shared variable. 100
library, 79 portability, 118

205 Ada QUAITMY AND STYLE

short circuit operator, 68 Storage_Error, 65

side effect, 43, 69 String, indexed with subtype, 114

simplification heuristics, 70 strong typing, 35, 41, 60
to enforce assumption, 131

slice, 71 to reduce constraint check, 155

source text, 5, 110 subprogram, 42
call

spacing, 5 named association, 58
for goto statement, 75 overhead, 43
for label, 75 recursive, 74
horizontal, 5 default parameter, 59

specification document non-portable, 111

comment, 26 end statement, 57

end statement, 57 exceptions raised in, 50

generic, 132 generic, 137, 147
header, as pagination, 13 grouped in package, 44
indentation, 8 grouping, 41
package, 46, 47 hiding task entries, 49

reusable part family, 149 Inline, 153

task hiding, 49, 134 main, 112
name, 22

spelling, 17 overload, 79
abbreviation, 19 overloading in generic, 134

in comments, 25 parameter list, 46, 58
procedure versus function, 43

Standard, 35 return, 75
predefined numeric type, 113 to reduce nesting, 70

starvation, 49 subrecord, 64

state subtype, 35, 60
and exception, 50 in case statement, 72
naming, 68 in generic, 132

used as range, 66statement, 69

abort, 106, 118 subunit

accept, 97, 103 embedded, pagination. 13

block, 76 file name, 41
case, 71 indentation, 8
comment, 32 minimize context, 47

delay, 95, 117 visibility, 47

end, 57 Suppress, 85

exit, 57, 72, 73 symbolic, value, 23
goto, 75 synchronization, 91
indentation, 6 and abort statement, 106
loop, 71 portability, 118

conditional exit, 69 using shared variable, 100
marker comment, 34
per line, 14 System
return, 75 portability, i20
select, 97, 103 portability of Tick, 117

portability, 117 system, do not comment, 27
tentative rendezvous, 102

static T
data, 65
expression, 23, 130 tab character, 7

205

INDEX 206

table-driven program, 150 thread of control, 92

task, 45, 91 Tick, portability, 117

abort dynamic, 94 time sliced, scheduling, 118
activation order, 117
allocate, 93 timed entry. 102
anonymous type, 92 affects 'Count. 100
attribute, 99 call, 50
avoid termination, 104 indentation, 8
body timing

exception handler, 106 affected by task, 94
indentation, 8 execution pattern, 96
order, 94 tool, 5, 25, 79

communication, 49, 96, 97
complexity, 103 access, 65
portability, 118 portability, 121

declaration. 92 ponymous, 62
document non-portable, 111 anonymous, 62dynamc, 93anonymous task, 92
dynamic, 93 attnriute, for real value, 115end statement, 57 budr au,6
hidden, 48, 134, 148 boundary value, 61

hidden, 48, heade, 18 choice affects equality, 80
comment in header, 27 comment, 30

model, 91 conversion, 61
name, 22 precision. 115
non-terminating, 105 declaration, 35
parameter passing, 85 derived, 35, 60
portability, 117 Duration, 110
receiving interrupt, 112 portability, 117
rendezvous, 96 enumeration, 36
runaway, 106 floating point, model, 114
scheduling, 106 grouped in package, 44

portability, 118 identifier, 20
specification Integer, 110

indentation, 8 limited private, 62, 145
pagination, 13 name, 20. 35

synchronization, 100 numeric, 113
point, 118 of constant, 24
portability, 118 parameter passing, 85

termination, 104, 105 predefined, 35, 113
type, 92 private, 62, 145

lskingError, 97, 99 renaming, 36
strong, 35, 41, 60

temporary file, portability, 123 subtype, 60
suffix, 20

tentative rendezvous, 102 straix, 2,unconstrained array, 131

terminate alternative, to avoid deadlock, 105 universal, 24
used as range, 66

termination, 104

abnormal, 106
controlled, 82 U
dynamic task, 94
file status, 123 UncheckedConversion, 83
normal, 105 portability, 122
of loop, 73 UncheckedDeallocation, 84

Text_10, 47 portability, 121

207 Ada QUALITY AND STYLE

underscore, 17 replaced with aggregate, 77
in file name, 41 to reduce nesting, 70
in numbers, 17 valid state, 134
significant in name, 20 verb

universalinteger, 24 as entry name. 22
portability, 110 as procedure name, 22

universal-real, 24 vertical alignment, 9, 10, 11
for greater precision, 115 See also alignment

until loop, how to simulate, 73 virtual processor, 92

upper case, 18 visibility, 46, 47, 77
use clause, 78, 79 using renames clause, 79

See also context clause

user-defined exception, 82 W
replaces implementation-defined, 119

while loop
See also loop

V indentation, 7

with clause. See context clause
variable

declaration, alignment, 10
localize declaration, 77 Z
of access type, 65
referenced in guard, 100 zero based indexing. 154

207

INDEX 208

